Open Access

Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron: response surface methodology with a Box-Behnken design


Cite

1. Castro, S., Davis, L.C. & Erickson, L.E. (2005). Natural, cost-effective, and sustainable alternatives for treatment of aircraft deicing fl uid waste. Environ. Prog. 24(1), 26-33. DOI: 10.1002/ep.10059.10.1002/ep.10059Search in Google Scholar

2. Weiss, S.J., Jakobs, L.E. & Reemtsma, T. (2006). Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ. Sci. Technol. 40(23), 7193-7199. DOI: 10.1021/es061434i.10.1021/es061434i17180966Search in Google Scholar

3. Giger, W., Schaffner, C. & Kohler, H.-P.E. (2006). Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ. Sci. Technol. 40(23), 7186-7192. DOI: 10.1021/es061565j.10.1021/es061565j17180965Search in Google Scholar

4. Alotaibi, M., et al. (2015). Benzotriazoles in the aquatic environment: a review of their occurrence, toxicity, degradation and analysis. Water, Air & Soil Pollution. 226(7), 1-20. DOI: 10.1007/s11270-015-2469-4.10.1007/s11270-015-2469-4Search in Google Scholar

5. Oller, I., Malato, S. & Sánchez-Pérez, J. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ. 409(20), 4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061.10.1016/j.scitotenv.2010.08.06120956012Search in Google Scholar

6. Dimoglo, A., et al. (2004). Petrochemical wastewater treatment by means of clean electrochemical technologies. Clean Technol Envir. 6(4), 288-295. DOI: 10.1007/s10098-004-0248-9.10.1007/s10098-004-0248-9Search in Google Scholar

7. Chakinala, A.G. et al. (2009). Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem. Eng. J. 152(2), 498-502. DOI: 10.1016/j.cej.2009.05.018.10.1016/j.cej.2009.05.018Search in Google Scholar

8. Wang, Y., et al. (2014). Optimization of coagulation-fl occulation process for papermaking-reconstituted tobacco slice wastewater treatment using response surface methodology. J. Ind. Eng. Chem. 20(2), 391-396. DOI: 10.1016/j.jiec.2013.04.033.10.1016/j.jiec.2013.04.033Search in Google Scholar

9. Nachiappan, S. & Muthukumar, K. (2010). Intensifi cation of textile effl uent chemical oxygen demand reduction by innovative hybrid methods. Chem. Eng. J. 163(3), 344-354. DOI: 10.1016/j.cej.2010.08.013.10.1016/j.cej.2010.08.013Search in Google Scholar

10. Tekin, H., et al. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater. 136(2), 258-265. DOI: 10.1016/j.jhazmat.2005.12.012.10.1016/j.jhazmat.2005.12.01216423452Search in Google Scholar

11. Farzadkia, M., et al. (2014). Investigation of photocatalytic degradation of clindamycin antibiotic by using nano-ZnO catalysts. Korean J. Chem. Eng. 31(11), 2014-2019. DOI: 10.1007/s11814-014-0119-y.10.1007/s11814-014-0119-ySearch in Google Scholar

12. Hem, L.J., et al. (2003). Photochemical degradation of benzotriazole. J. Environ. Sci. Health, Part A. 38(3), 471-481. DOI: 10.1081/ESE-120016907.10.1081/ESE-12001690712680576Search in Google Scholar

13. Xu, B., et al. (2010). Benzotriazole removal from water by Zn-Al-O binary metal oxide adsorbent: Behavior, kinetics and mechanism. J. Hazard Mater. 184(1), 147-155. DOI: 10.1016/j.jhazmat.2010.08.017.10.1016/j.jhazmat.2010.08.01720828924Search in Google Scholar

14. Yang, B., et al. (2011). Kinetics modeling and reaction mechanism of ferrate (VI) oxidation of benzotriazoles. Water Res. 45(6), 2261-2269. DOI: 10.1016/j.watres.2011.01.022.10.1016/j.watres.2011.01.02221334710Search in Google Scholar

15. Zúñiga-Benítez, H., Soltan, J. & Peñuela, G. (2014). Ultrasonic degradation of 1-H-benzotriazole in water. Water Sci. Technol. 70(1), 152-159. DOI: 10.2166/wst.2014.210.10.2166/wst.2014.21025026593Search in Google Scholar

16. Bahnmüller, S., et al. (2015). Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H 2 O 2. Water Res. 74, 143-154. DOI: 10.1016/j.watres.2014.12.039.10.1016/j.watres.2014.12.03925725202Search in Google Scholar

17. Crane, R. & Scott, T. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211, 112-125. DOI: 10.1016/j. jhazmat.2011.11.073.Search in Google Scholar

18. Fu, F., Dionysiou, D.D. & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194-205. DOI: 10.1016/j.jhazmat.2013.12.062.10.1016/j.jhazmat.2013.12.06224457611Search in Google Scholar

19. Chen, H., et al. (2016). Facile synthesis of graphene nano zero-valent iron composites and their effi cient removal of trichloronitromethane from drinking water. Chemosphere. 146, 32-39. DOI: 10.1016/j.chemosphere.2015.11.095.10.1016/j.chemosphere.2015.11.09526706929Search in Google Scholar

20. Zhang, J., et al. (2011). 3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solution. Pol. J. Chem. Technol. 13(2), 35-39. DOI: 10.2478/v10026-011-0021-x.10.2478/v10026-011-0021-xSearch in Google Scholar

21. Pradhan, A.A. & Gogate, P.R. (2010). Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. J. Hazard. Mater. 173(1), 517-522. DOI: 10.1016/j. jhazmat.2009.08.115.Search in Google Scholar

22. Wang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 76(3), 714-720. DOI: 10.1016/j.dyepig.2007.01.012.10.1016/j.dyepig.2007.01.012Search in Google Scholar

23. Jiang, C., et al. (2010). A new insight into Fenton and Fenton-like processes for water treatment. J. Hazard. Mater. 174(1-3), 813-817. DOI: 10.1016/j.jhazmat.2009.09.125.10.1016/j.jhazmat.2009.09.125Search in Google Scholar

24. Weng, C.H., et al. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrason. Sonochem. 20(3), 970-977. DOI: 10.1016/j.ultsonch.2012.09.014.10.1016/j.ultsonch.2012.09.014Search in Google Scholar

25. O’Rourke, N., Psych, R. & Hatcher, L. (2013). A step- -by-step approach to using SAS for factor analysis and structural equation modeling. Sas Institute.Search in Google Scholar

26. Tripathi, P., Srivastava, V.C. & Kumar, A. (2009). Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination 249(3), 1273-1279. DOI: 10.1016/j.desal.2009.03.010.10.1016/j.desal.2009.03.010Search in Google Scholar

27. Khataee, A.R., Zarei, M. & Moradkhannejhad, L. (2010). Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode. Desalination 258(1-3), 112-119. DOI: 10.1016/j.desal.2010.03.028.10.1016/j.desal.2010.03.028Search in Google Scholar

28. Rahmani, H., et al. (2014). Tinidazole Removal from Aqueous Solution by Sonolysis in the Presence of Hydrogen Peroxide. Bull. Environ. Contam. Toxicol. 92(3), 341-346. DOI: 10.1007/s00128-013-1193-2.10.1007/s00128-013-1193-2Search in Google Scholar

29. Lucas, M.S. & Peres, J.A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm. 71(3), 236-244. DOI: 10.1016/j.dyepig.2005.07.007.10.1016/j.dyepig.2005.07.007Search in Google Scholar

30. Ahmadi Moghaddam, M., et al. (2010). Degradation of 2, 4-dinitrophenol by photo fenton process. Asian J. Chem. 22(2), 1009-1016.Search in Google Scholar

31. Chan, K. & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere. 51(4), 305-311. DOI: 10.1016/S0045-6535(02)00812-3.10.1016/S0045-6535(02)00812-3Search in Google Scholar

32. Hermosilla, D., Cortijo, M. & Huang, C. (2009). The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes. Chem. Eng. J. 155(3), 637-646. DOI: 10.1016/j. cej.2009.08.020.Search in Google Scholar

33. Cavalcante, R.P., et al. (2013). Application of Fenton, photo-Fenton, solar photo-Fenton, and UV/H2O2 to degradation of the antineoplastic agent mitoxantrone and toxicological evaluation. Environ. Sci. Poll. Res. 20(4), 2352-2361. DOI: 10.1007/s11356-012-1110-y.10.1007/s11356-012-1110-y22886782Search in Google Scholar

34. Keenan, C.R. & Sedlak, D.L. (2008). Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 42(4), 1262-1267. DOI: 10.1021/es7025664.10.1021/es702566418351103Search in Google Scholar

35. Lee, C., Keenan, C.R. & Sedlak, D.L. (2008). Polyoxometalate- enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 42(13), 4921-4926. DOI.10.1021/es800317j253672018678027Search in Google Scholar

36. Lee, C. & Sedlak, D.L. (2008). Enhanced formation of oxidants from bimetallic nickel− iron nanoparticles in the presence of oxygen. Environ. Sci. Technol. 42(22), 8528-8533. DOI: 10.1021/es801947h.10.1021/es801947hSearch in Google Scholar

37. Mert, B.K., et al. (2010). Pre-treatment studies on olive oil mill effl uent using physicochemical, Fenton and Fenton-like oxidations processes. J. Hazard. Mater. 174(1), 122-128. DOI: 10.1016/j.jhazmat.2009.09.025.10.1016/j.jhazmat.2009.09.025Search in Google Scholar

38. Babuponnusami, A. & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Engineer. 2(1), 557-572. DOI: 10.1016/j.jece.2013.10.011.10.1016/j.jece.2013.10.011Search in Google Scholar

39. Xu, J., et al. (2013). Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chem. Eng. J. 221, 230-237. DOI: 10.1016/j.cej.2013.01.081.10.1016/j.cej.2013.01.081Search in Google Scholar

40. Wu, J., et al. (2013). Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe 2 O 4 nanoparticles as catalyst. J. Environ. Sci. 25(4), 801-807. DOI: 10.1016/S1001-0742(12)60117-X.10.1016/S1001-0742(12)60117-XSearch in Google Scholar

41. Ahmadi, M., Ghanbari, F. & Madihi-Bidgoli, S. (2016). Photoperoxi-coagulation using activated carbon fi ber cathode as an effi cient method for benzotriazole removal from aqueous solutions: Modeling, optimization and mechanism. J. Photochem. Photobiol. A: Chemistry 322, 85-94. DOI: 10.1016/j. jphotochem.2016.02.025.Search in Google Scholar

42. Ding, Y., et al. (2010). Photoelectrochemical activity of liquid phase deposited TiO 2 fi lm for degradation of benzotriazole. J. Hazard. Mater. 175(1), 96-103. DOI: 10.1016/j. jhazmat.2009.09.037.Search in Google Scholar

43. Zhang, Y., et al. (2016). Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO 2: Combination of adsorption and catalysis oxidation. Appl. Catal. B: Environmental 199, 447-457. DOI: 10.1016/j.apcatb.2016.06.003.10.1016/j.apcatb.2016.06.003Search in Google Scholar

44. Borowska, E., Felis, E. & Kalka, J. (2016). Oxidation of benzotriazole and benzothiazole in photochemical processes: Kinetics and formation of transformation products. Chem. Eng. J. 304, 852-863. DOI: 10.1016/j.cej.2016.06.123.10.1016/j.cej.2016.06.123Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering