Open Access

Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model


Cite

1. Singhal, S.C. & Kendall, K. (2003). High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier.Search in Google Scholar

2. Milewski, J., Swiercz, T., Badyda, K., Miller, A., Dmowski, A. & Biczel, P. (2010). The control strategy for a molten carbonate fuel cell hybrid system. Int. J. Hydrogen Energy 35(7), 2997-3000. DOI: 10.1016/j.ijhydene.2009.06.040.10.1016/j.ijhydene.2009.06.040Search in Google Scholar

3. de Haart, L.G.J., Mougin, J., Posdziech, O., Kiviaho, J. & Menzler, N.H. (2009). Stack degradation in dependence of operation parameters; the real-SOFC sensitivity analysis. Fuel Cells. 9, 794-804. DOI: 10.1002/fuce.200800146.10.1002/fuce.200800146Search in Google Scholar

4. Jiang, Y. & Virkar, A.V. (2001). A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J. Electrochem. Soc. 148(7), A706-A709. DOI: 10.1149/1.1375166.10.1149/1.1375166Search in Google Scholar

5. Fuel Cell Handbook 7th Edition. (2004). EG G Technical Services, Inc.Search in Google Scholar

6. O’Hayre, R., Cha, S.W., Colella, W. & Prinz, F. (2005). Fuel cell fundamentals. Wiley.Search in Google Scholar

7. Yokokawa, H. (2003). Understanding materials compatibility. Ann. Rev. Mater. Rese. 33, 581-610. DOI: 10.1146/ annurev.matsci.33.022802.093856.10.1146/annurev.matsci.33.022802.093856Search in Google Scholar

8. Staniforth, J. & Ormerod, R.M. (2003). Running solid oxide fuel cells on biogas. Ionics 9(5-6), 336-341. DOI: 10.1007/ BF02376583.10.1007/BF02376583Search in Google Scholar

9. Wojcik, A., Middleton, H., Damopoulos, I. & Van Heerle, J. (2003). Ammonia as a fuel in solid oxide fuel cells. J. Power Sour. 118(1-2), 342-348. DOI: 10.1016/S0378-7753(03)00083-1.10.1016/S0378-7753(03)00083-1Search in Google Scholar

10. Murray, E., Harris, S. & Jen, H. (2002). Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel. J. Electroch. Society, 149(9), A1127-A1131. DOI: 10.1149/1.1496484.10.1149/1.1496484Search in Google Scholar

11. Vijay, P., Hosseini, S. & Tade, M. (2013). A novel concept for improved thermal management of the planar SOFC. Chem. Eng. Res. Des. 91, 560-572. DOI: http://dx.doi.org/10.1016/j.cherd.2012.09.004.10.1016/j.cherd.2012.09.004Search in Google Scholar

12. Nakajo, A., Mueller, F., Brouwer, J., Van Herle, J. & Favart, D. (2011). Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling. Int. J. Hydrogen Energy, 37, 9269-9286. DOI: 10.1016/j.ijhydene.2012.03.023.10.1016/j.ijhydene.2012.03.023Search in Google Scholar

13. Guan, W.B., Jin, L., Ma, X. & Wang, W.G. (2012). Investigation of Impactors on Cell Degradation Inside Planar SOFC Stacks. Fuel Cells. 12(6), 1085-1094. DOI: 10.1002/ fuce.201200063.10.1002/fuce.201200063Search in Google Scholar

14. Ferraro, M. (2015). Telecom technology. Int. Innovation. 173, 64-66.Search in Google Scholar

15. Jewulski, J. & Kupecki, J. (2015). Polish Patent PL404264- -A1. Warsaw, Poland.Search in Google Scholar

16. Wakui, T., Yokoyama, R. & Shimizu, K. (2010). Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems. Energy 35, 740-750. DOI: 10.1016/j.energy.2009.09.029.10.1016/j.energy.2009.09.029Search in Google Scholar

17. Kupecki, J., Jewulski, J. & Badyda, K. (2011). Selection of a fuel processing method for SOFC-based micro-CHP system. Rynek Energii. 97(6), 157-162.Search in Google Scholar

18. Ang, S.M.C., Fraga, E.S., Brandon, N.P., Samsatli, N.J. & Brett, D.J.L. (2011). Fuel cell systems optimisation e methods and strategies. Int. J. Hydrogen Energy 36, 14678-14703. DOI: 10.1016/j.ijhydene.2011.08.053.10.1016/j.ijhydene.2011.08.053Search in Google Scholar

19. Kandepu, R., Imsland, L., Foss, B.A., Stiller, C., Thorud, B. & Bolland, O. (2007). Modeling and control of a SOFC-GTbased autonomous power system. Energy. 32, 406-417. DOI: 10.1016/j.energy.2006.07.034.10.1016/j.energy.2006.07.034Search in Google Scholar

20. Ferrari, M.L. (2015). Advanced control approach for hybrid systems based on solid oxide fuel cells. App. Energy145, 364-373. DOI: 10.1016/j.apenergy.2015.02.059.10.1016/j.apenergy.2015.02.059Search in Google Scholar

21. Wolowicz, M., Kupecki, J., Wawryniuk, K., Milewski, J. & Motylinski, K. (2015). Analysis of nodalization effects on the prediction error of generalized fi nite element method used for dynamic modeling of hot water storage tank. Arch.Thermodyn. 36, 123-138. DOI: 10.1515/aoter-2015-0025.10.1515/aoter-2015-0025Search in Google Scholar

22. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien, M. (2015). Analysis of a micro-CHP unit with in-series SOFC stacks fed by biogas. Energy Procedia 75, 2021-2026. DOI: 10.1016/j.egypro.2015.07.265.10.1016/j.egypro.2015.07.265Search in Google Scholar

23. Kupecki, J. (2013). Analysis of micro-combined heat and power unit with solid oxide fuel cells. Doctoral dissertation, Warsaw University of Technology, OWPW, Poland.Search in Google Scholar

24. Kupecki, J., Milewski, J., Szczesniak, A., Bernat, R. & Motylinski, K. (2015). Dynamic numerical analysis of cross-, co-, and counter-current fl ow configurations of a 1 kW-class solid oxide fuel cell stack. Int. J. Hydrogen Energy 40(45), 15834-15844. DOI: 10.1016/j.ijhydene.2015.07.008.10.1016/j.ijhydene.2015.07.008Search in Google Scholar

25. Kupecki, J., Jewulski, J. & Milewski, J. (2012). Multi-Level Mathematical Modeling of Solid Oxide Fuel Cells. In Clean Energy for Better Environment. Intech, Croatia.10.5772/50724Search in Google Scholar

26. Retrieved July 21, 2014, from www.silca-online.deSearch in Google Scholar

27. Ki, J. & Kim, D. (2010). Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process. J. Power Sour. 195, 3186-3200. DOI: 10.1016/j. jpowsour.2009.11.129.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering