Cite

1. Patrick, L. (2006). Lead toxicity, review of the literature. Part 1: Exposure, evaluation, and treatment. Altern. Med. Rev. 11(1), 2-21.Search in Google Scholar

2. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscipl. Toxicol. 7(2), 60-72. DOI: 10.2478/intox-2014-0009.10.2478/intox-2014-0009442771726109881Search in Google Scholar

3. Guo, X., Zhang, S. & Shan, X. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151(1), 134-142. DOI: 10.1016/j.jhazmat.2007.05.065.10.1016/j.jhazmat.2007.05.06517587495Search in Google Scholar

4. Ciesielczyk, F., Bartczak, P., Wieszczycka, K., Siwińska-Stefańska, K., Nowacka, M. & Jesionowski, T. (2013). Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides. Adsorption 19(2), 423-434. DOI: 10.1007/ s10450-012-9464-5.10.1007/s10450-012-9464-5Search in Google Scholar

5. Huang, G., Wanga, D., Mab, S., Chen, J., Jiang, L. & Wang, P. (2015). A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). J. Colloid Interface Sci. 445, 294-302. DOI: 10.1016/j. jcis.2014.12.099.Search in Google Scholar

6. Miretzky, P., Munoz, C. & Carrillo-Chavez, A. (2007). A sandy loam soil as a natural control for Pb contamination. Environ. Chem. Lett. 5(3), 131-136. DOI: 10.1007/s10311-007-0093-2.10.1007/s10311-007-0093-2Search in Google Scholar

7. Safari Sinegani, A.A. & Araki, H.M. (2010). The effects of soil properties and temperature on the adsorption isotherms of lead on some temperate and semiarid surface soils of Iran. Environ. Chem. Lett. 8(2), 129-137. DOI: 10.1007/s10311-009-0199-9.10.1007/s10311-009-0199-9Search in Google Scholar

8. Pei-Sin, K., Siew-Ling, L., Sie-Tiong, H., Yung-Tse, H. & Siew-Teng, O. (2014). Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ. Chem. Lett. 12(1), 15-25. DOI: 10.1007/s10311-013-0427-1.10.1007/s10311-013-0427-1Search in Google Scholar

9. Inagaki, S., Caretta, T., Alfaya, R.V. & Alfaya, A. (2013). Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu(II), Cd(II), and Pb(II) from industrial effl uent. Desalin. Water Treat. 51(28-30), 5537-5546. DOI: 10.1080/19443994.2012.759156.10.1080/19443994.2012.759156Search in Google Scholar

10. Şahin, İ., Keskin, S.Y. & Keskin, C.S. (2013). Biosorption of cadmium, manganese, nickel, lead, and zinc ions by Aspergillus tamari. Desalin. Water Treat. 51(22-24), 4524-4529. DOI: 10.1080/19443994.2012.752332.10.1080/19443994.2012.752332Search in Google Scholar

11. Meena, A.K., Kadirvelu, K., Mishraa, G.K., Rajagopal, C. & Nagar, P.N. (2008). Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater. 150(3), 619-625. DOI: 10.1016/j.jhazmat.2007.05.011.10.1016/j.jhazmat.2007.05.01117574736Search in Google Scholar

12. Thakur, V.K. & Thakur, M.K. (2015). Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72, 834-847. DOI: 10.1016/j.ijbiomac.2014.09.044.10.1016/j.ijbiomac.2014.09.04425304747Search in Google Scholar

13. Thakur, V.K., Thakur, M.K. & Gupta, R.K. (2014). Review: Raw natural fi ber-based polymer composites. Int. J. Polym. Anal. Character. 19(3), 256-271. DOI: 10.1080/1023666X.2014.880016.10.1080/1023666X.2014.880016Search in Google Scholar

14. Thakur, V.K., Thakur, M.K., Raghavan, P. & Kessler M.R. (2014). Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustainable Chem. Eng. 2(5), 1072-1092. DOI: 10.1021/sc500087z.10.1021/sc500087zSearch in Google Scholar

15. Betancur, M., Bonelli, P.R., Velásquez, J.A. & Cukierman, A.L. (2009). Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: Effect of demineralization. Bioresour. Technol. 100(3), 1130-1137. DOI: 10.1016/j.biortech.2008.08.023.10.1016/j.biortech.2008.08.02318809320Search in Google Scholar

16. Bulgariu, L., Bulgariu, D., Malutan, T. & Macoveanu, M. (2009). Adsorption of lead(II) ions from aqueous solution onto lignin. Adsorp. Sci. Technol. 27(4), 435-445. DOI: 10.1260/026361709790252623.10.1260/026361709790252623Search in Google Scholar

17. Guo, X., Zhang, S. & Shan, X. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151(1), 134-142. DOI: 10.1016/j.jhazmat.2007.05.065.10.1016/j.jhazmat.2007.05.06517587495Search in Google Scholar

18. Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Colloid Interface Colloid Interface Sci. 166(1-2), 36-59. DOI: 10.1016/j.cis.2011.04.005.10.1016/j.cis.2011.04.00521669401Search in Google Scholar

19. Lei, Y. & Huizhen, Y. (2013). Modifi cation of reed alkali lignin to adsorption of heavy metals. Adv. Mater. Res. 622(1), 1646-1650. DOI: 10.4028/www.scientifi c.net/AMR.622-623.1646.Search in Google Scholar

20. Ge, Y., Li, Z., Kong, Y., Song, Q. & Wang, K. (2014). Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms. J. Ind. Eng. Chem. 20(6), 4429-4436. DOI: 10.1016/j.jiec.2014.02.011.10.1016/j.jiec.2014.02.011Search in Google Scholar

21. Klapiszewski, Ł., Nowacka, M., Milczarek, G. & Jesionowski, T. (2013). Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr. Polym. 94(1), 345-355. DOI: 10.1016/j.carbpol.2013.01.058.10.1016/j.carbpol.2013.01.05823544548Search in Google Scholar

22. Jesionowski, T., Klapiszewski, Ł. & Milczarek, G. (2014). Kraft lignin and silica as precursors of advanced composite materials and electroactive blends. J. Mater. Sci. 49(3), 1376-1385. DOI: 10.1007/s10853-013-7822-7.10.1007/s10853-013-7822-7Search in Google Scholar

23. Klapiszewski, Ł., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K. & Jesionowski, T. (2015). Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem. Eng. J. 260, 684-693. DOI: 10.1016/j.cej.2014.09.054.10.1016/j.cej.2014.09.054Search in Google Scholar

24. Jesionowski, T., Klapiszewski, Ł. & Milczarek, G. (2014). Structural and electrochemical properties of multifunctional silica/lignin materials. Mater. Chem. Phys. 147(3), 1049-1057. DOI: 10.1016/j.matchemphys.2014.06.058.10.1016/j.matchemphys.2014.06.058Search in Google Scholar

25. Jesionowski, T. & Krysztafkiewicz, A. (2000). Comparison of the techniques used to modify amorphous hydrated silicas. J. Non-Cryst. Sol. 277(1), 45-57. DOI: 10.1016/S0022-3093(00)00299-4.10.1016/S0022-3093(00)00299-4Search in Google Scholar

26. Jesionowski, T., Ciesielczyk, F. & Krysztafkiewicz, A. (2010). Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater. Chem. Phys. 119(1-2), 65-74. DOI: 10.1016/j. matchemphys.2009.07.034.Search in Google Scholar

27. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga. Svenska. Vetensk. Handl. 24, 1-39.Search in Google Scholar

28. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451-465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

29. Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phys. Chem. 57(A), 385-470.Search in Google Scholar

30. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1403.10.1021/ja02242a004Search in Google Scholar

31. Kumari, M., Pittman, Jr C.U. & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 442, 120-132. DOI: 10.1016/j.jcis.2014.09.012.10.1016/j.jcis.2014.09.01225531287Search in Google Scholar

32. Ma, S., Chen, Q., Li, H., Wang, P., Islam, S.M., Gu, Q., Yanga, X. & Kanatzidis, M.G. (2014). Highly selective and effi cient heavy metal capture with polysulfi de intercalated layered double hydroxides. J. Mater. Chem. A 2(26), 10280-10289. DOI: 10.1039/C4TA01203H.10.1039/C4TA01203HSearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering