Cite

1. Xu, C. & Sun, S. (2007). Monodisperse magnetic nanoparticles for biomedical applications, polymer international. Polym. Int. 56(7), 821–826. DOI: 10.1002/pi.2251.10.1002/pi.2251Search in Google Scholar

2. Leem, G., Sarangi, S., Zhang, S., Rusakova, I., Brazdeikis, A., Litvinov, D. & Lee, T.R. (2009). Surfactant-controlled size and shape evolution of magnetic nanoparticles. Cryst. Growth Des. 9(1), 32–34. DOI: 10.1021/cg8009833.10.1021/cg8009833Search in Google Scholar

3. Chełminiak, D., Ziegler-Borowska, M. & Kaczmarek, H. (2015). Nanocząstki magnetytu powlekane polimerami do zastosowań biomedycznych Cz. II. Nanocząstki Fe3O4 z powłokami z polimerów syntetycznych. Polimery, 60(2), 87–94. DOI: 10.14314/polimery.2015.087.10.14314/polimery.2015.087Search in Google Scholar

4. Pikul, A.P. (2012). Wybrane zagadnienia z fizyki magnetyków. Wrocław. Uniwersytet Wrocławski.Search in Google Scholar

5. Gupta, A.K. & Guptab, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012.10.1016/j.biomaterials.2004.10.01215626447Search in Google Scholar

6. Fang, W., Zheng, J., Chen, C., Zhang, H., Lu, Y., Mac, L. & Chen, G. (2014). One-pot synthesis of porous Fe3O4 shell/silver core nanocomposites used as recyclable magnetic antibacterial agents. J. Magn. Magn. Mater. 357, 1–6. DOI: 10.1016/j.jmmm.2014.01.024.10.1016/j.jmmm.2014.01.024Search in Google Scholar

7. Chen, Y., Gao, N. & Jiang, J. (2013). Surface matters: enhanced bactericidal property of core–shell Ag–Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small 9, 3242–3246. DOI: 10.1002/smll.201300543.10.1002/smll.20130054323585383Search in Google Scholar

8. Brollo, M.E.F., López-Ruiz, R., Muraca, D., Figueroa, S. J.A., Pirota, K.R. & Knobel, M. (2014). Compact Ag@Fe3O4 core-shell nanoparticles by means of single-step thermal decomposition reaction. Sci. Rep. 4, 6839. DOI: 10.1038/srep06839.10.1038/srep06839421377025354532Search in Google Scholar

9. Chełminiak, D., Ziegler-Borowska, M. & Kaczmarek, H. (2015). Nanocząstki magnetytu pokryte polimerami do zastosowań biomedycznych. Cz. I. Otrzymywanie nanocząstek Fe3O4 z powłokami z polisacharydów. Polimery 60(1), 12–17. DOI: 10.14314/polimery.2015.012.10.14314/polimery.2015.012Search in Google Scholar

10. Hariani, P.L., Faizal, Ridwan, M. & Marsi, Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int. J. Environ. Sci. Dev. 4(3), 336–340. DOI: 10.7763/IJESD.2013.V4.366.10.7763/IJESD.2013.V4.366Search in Google Scholar

11. Yana, H., Lipinga, Z., Weiweia, H., Xiaojuanb, L., Xiangnongc, L. & Yuxianga, Y. (2010). A Study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method. Glass. Phys. Chem+ 36(3), 325–331. DOI: 10.1134/S1087659610030090.10.1134/S1087659610030090Search in Google Scholar

12. Lu, A.H., Salabas, E.L. & Schth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Edit. 46(26), 1222–1244. DOI: 10.1002/anie.200602866.10.1002/anie.20060286617278160Search in Google Scholar

13. Pérez, J.A.L. & Quintela, M.A.L. (1997). Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B 101(41), 8045–8047. DOI: 10.1021/jp972046t.10.1021/jp972046tSearch in Google Scholar

14. Kornak, R., Nižňanskỳ, D., Haimann, K., Tylus, W. & Maruszewsk, K. (2005). Synthesis of magnetic nanoparticles via the sol-gel technique. Mater. Sci. PL 23(1), 87–92.Search in Google Scholar

15. Cai, W. & Wan, J., (2007). Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Coll. Interf. Sci. 305, 366–370. DOI: 10.1016/j.jcis.2006.10.023.10.1016/j.jcis.2006.10.02317084856Search in Google Scholar

16. Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. & Li, Ya., (2005), Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew. Chem. Int. Ed. 117, 2842–2845.Search in Google Scholar

17. Xin, T., Ma, M., Zhang, H., Gu, J., Wang, S., Liu, M. & Zhang, Q. (2014). A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl. Surf. Sci. 288(1), 51–59. DOI: 10.1016/j.apsusc.2013.09.108.10.1016/j.apsusc.2013.09.108Search in Google Scholar

18. Tan, L., Zhang, X., Liu, Q., Jing, X., Liu, J., Song, D., Hu, S., Liu, L. & Wang, J. (2015) Synthesis of Fe3O4@TiO2 core-shell magnetic composites for highly efficient sorption of uranium(VI). Coll. Surf. A. 469, 279–286. DOI: 10.1016/j.colsurfa.2015.01.040.10.1016/j.colsurfa.2015.01.040Search in Google Scholar

19. Ghazanfari, M., Johar F. & Yazdani, A. (2014). Synthesis and characterization of Fe3O4@Ag core-shell: structural, morphological, and magnetic properties. J. Ultrafine Grained Nanostruct. Mater. 118(47), 97–103.Search in Google Scholar

20. Gong, P., He, H., Li, X., Wang, K., Hu, J., Tan, W., Zhang, S. & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18(28). DOI: 10.1088/0957-4484/18/28/285604.10.1088/0957-4484/18/28/285604Search in Google Scholar

21. Zhang, D.H., Li, G.D., Lia, J.X. & Chen, J.S. (2008). Received one-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun. 29, 3414–3416. DOI: 10.1039/B805737K.10.1039/b805737k18633507Search in Google Scholar

22. Moosavi, R., Afkhami, A. & Madrakian, T. (2015). A Simple cyanide sensing probe based on Ag/Fe3O4 nanoparticles. Anal. Chem. 5, 15886–15891. DOI: 10.1039/C4RA14806A.10.1039/C4RA14806ASearch in Google Scholar

23. Jäger, M., Schubert, S., Ochrimenko, S., Fischer, D., & Schubert, U.S. (2012). Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem. Soc. Rev. 41, 4755–4767. DOI: 10.1039/C2CS35146C.10.1039/c2cs35146c22648524Search in Google Scholar

24. Wang, S.T., Yan, J.C. & Chen, L. (2005). Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Mater. Lett. 59, 1383–1386. DOI: 10.1016/j.matlet.2004.12.045.10.1016/j.matlet.2004.12.045Search in Google Scholar

25. Mohai, M. (2006). XPS MultiQuant: a step towards expert systems. Surf. Interf. Anal. 38(4), 640–643. DOI: 10.1002/sia.2198.10.1002/sia.2198Search in Google Scholar

26. Briggs, D., Grant, J.T. (2003). Surface analysis by auger and X-ray photoelectron spectroscopy in IM Publications and SurfaceSpectra Limited. Charlton Manchester.Search in Google Scholar

27. Sadri, F., Ramazani, A., Massoudi, A., Khoobi, M., Tarasi, R., Shafiee, A., Azizkhani, V., Dolatyari, L. & Joo, S.W. (2014). Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem. Lett. Rev. 7(3), 257–264. DOI: 10.1080/17518253.2014.939721.10.1080/17518253.2014.939721Search in Google Scholar

28. Li, C., Tan, J., Fan, X., Zhang, B., Zhang, H. & Zhang, Q. (2009). Magnetically separable one dimensional Fe3O4/P(MAA-DVB)/TiO2 nanochains: preparation, characterization and photocatalytic activity. Polymer 50, 1887–1894. DOI: 10.1016/j.ceramint.2014.11.064.10.1016/j.ceramint.2014.11.064Search in Google Scholar

29. Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M. & Abdollahi, Y. (2012). Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci. 13(6), 6639–6650. DOI: 10.3390/ijms13066639.10.3390/ijms13066639339748622837654Search in Google Scholar

30. Guo, F., Zhang, Q., Zhang, B., Zhang, H. & Zhang, L. (2009). Preparation and characterization of magnetic composite microspheres using a free radical polymerization system consisting of DPE. Polym. Phy. 50, 1887–1894. DOI: 10.1016/j.polymer.2009.02.023.10.1016/j.polymer.2009.02.023Search in Google Scholar

31. Wang, B., Wei, Q., Qu, S.H. (2013). Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation metod. Int. J. Electrochem. Sci. 8, 3786–3793.Search in Google Scholar

32. Mandal, M., Kundu, S., Ghosh, S.K., Panigrahi, S., Sau, T.K., Yusuf, S.M. & Pal, T. (2005). Magnetite nanoparticles with tunable gold or silver shell. J. Coll. Interf. Sci. 286(1), 94–187. DOI: 10.1016/j.jcis.2005.01.013.10.1016/j.jcis.2005.01.01315848416Search in Google Scholar

33. Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G. & Gu, N. (2009). Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscal. Res. Lett. 4(4), 287–295. DOI: 10.1007/s11671-008-9239-9.10.1007/s11671-008-9239-9289343720596545Search in Google Scholar

34. Prucek, R, Tuček, J., Kilianová, M., Panáček, A., Kvítek, L., Filip, J., Kolář, M., Tománková, K. & Zbořil, R. (2011). The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32(21), 4704–4713. DOI: 10.1016/j.biomaterials.2011.03.039.10.1016/j.biomaterials.2011.03.03921507482Search in Google Scholar

35. Sondi, I. & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Interf. Sci. 275(1), 177–182. DOI: 10.1016/j.jcis.2004.02.012.10.1016/j.jcis.2004.02.01215158396Search in Google Scholar

36. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ram, J.T. & Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), 2346–2353. DOI: 10.1088/0957-4484/16/10/059.10.1088/0957-4484/16/10/05920818017Search in Google Scholar

37. Pal, S., Tak, Y.K. & Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A Study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73(6), 1712–1720. DOI: 10.1128/AEM.02218-06.10.1128/AEM.02218-06182879517261510Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering