Open Access

Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite


Cite

1. Gupta, V.K., Srivastava, S.K., Mohan, D. & Sharma, S. (1998). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage. 17(8), 517–522. DOI: 10.1016/S0956-053X(97)10062-9.10.1016/S0956-053X(97)10062-9Search in Google Scholar

2. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater. 185(1), 17–23. DOI: 10.1016/j.jhazmat.2010.08.053.10.1016/j.jhazmat.2010.08.05320888691Search in Google Scholar

3. Gupta, V.K. & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180, 81–90. DOI: 10.1016/j.cej.2011.11.006.10.1016/j.cej.2011.11.006Search in Google Scholar

4. Saleh, T.A. & Gupta, V.K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228. DOI: 10.1007/s11356-011-0670-6.10.1007/s11356-011-0670-622124802Search in Google Scholar

5. Gupta, V.K., Nayak, A. & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 20(1), 001–018. DOI: 10.4491/eer.2015.018.10.4491/eer.2015.018Search in Google Scholar

6. Goswami, A., Raul, P.K. & Purkait, M.K. (2012). Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 90, 1387–1396. DOI: 10.1016/j.cherd.2011.12.006.10.1016/j.cherd.2011.12.006Search in Google Scholar

7. Khan, T., Isa, M.H., Mustafa, M.R.U., Yeek-Chia, H., Baloo, L., Manan, T.S.B.A. & Saeed, M.O. (2016). Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv. 6, 56365–56374. DOI: 10.1039/C6RA05618K.10.1039/C6RA05618KSearch in Google Scholar

8. Giraldo, L., Erto, A. & Moreno-Piraján, J.C. (2013). Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2), 465–474. DOI: 10.1007/s10450-012-9468–1.10.1007/s10450-012-9468-1Search in Google Scholar

9. Krishna, R.H. & Swamy, A. (2011). Kinetic and isotherm modeling of adsorption of Ni (II) form aqueous solutions onto powder of papaya seeds. Int. J. Sci. Res. Publ. 1(1), 1–6. ISSN 2250-3153.Search in Google Scholar

10. Sanciolo, P., Harding, I.H. & Mainwaring, D.E. (1992). The Removal of chromium, nickel, and zinc from electroplating wastewater by adsorbing colloid flotation with a sodium dodecylsulfate/dodecanoic acid mixture. Sep. Sci. Technol. 27, 375–388. DOI: 10.1080/01496399208018887.10.1080/01496399208018887Search in Google Scholar

11. Murthy, Z.V.P. & Chaudhari, L.B. (2008). Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70–77. DOI: 10.1016/j.jhazmat.2008.02.085.10.1016/j.jhazmat.2008.02.08518400379Search in Google Scholar

12. Siboni, M.S., Samadi, M.T., Yang, J.K. & Lee, S.M. (2012). Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalin. Water Treat. 40, 77–83. DOI: 10.1080/19443994.2012.671144.10.1080/19443994.2012.671144Search in Google Scholar

13. Chen, X., Huang, G. & Wang, J. (2013). Electrochemical reduction/oxidation in the treatment of heavy metal wastewater. J. Metall. Eng. 2, 161–164.Search in Google Scholar

14. Dabrowski, A., Hubicki, Z., Podkościelny, P. & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemo-sphere 56, 91–106. DOI: 10.1016/j.chemosphere.2004.03.006.10.1016/j.chemosphere.2004.03.006Search in Google Scholar

15. Molinari, R., Poerio, T. & Argurio, P. (2008). Selective separation of copper(II) and nickel(II) from aqueous media using the complexationeultrafiltration process. Chemosphere 70, 341–348. DOI: 10.1016/j.chemosphere.2007.07.041.10.1016/j.chemosphere.2007.07.041Search in Google Scholar

16. Lakshtanov, L.Z. & Stipp, S.L.S. (2007). Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697. http://dx.doi.org/10.1016/j.gca.2007.04.006.10.1016/j.gca.2007.04.006Search in Google Scholar

17. Al-Asheh, S., Banat, F. & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39(12), 2087–2096. DOI: 10.1016/S0045-6535(99)00098-3.10.1016/S0045-6535(99)00098-3Search in Google Scholar

18. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223–230. DOI: 10.1016/j.jhazmat.2004.06.014.10.1016/j.jhazmat.2004.06.014Search in Google Scholar

19. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003.10.1016/j.seppur.2004.12.003Search in Google Scholar

20. Panneerselvam, P., Morad, N. & Tan, K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160–168. DOI: 10.1016/j.jhazmat.2010.10.102.10.1016/j.jhazmat.2010.10.102Search in Google Scholar

21. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.10.1016/S0304-3894(02)00237-6Search in Google Scholar

22. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.10.1016/j.seppur.2005.11.016Search in Google Scholar

23. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830. DOI: 10.1016/S0956-053X(02)00011-9.10.1016/S0956-053X(02)00011-9Search in Google Scholar

24. Otun, J.A, Oke, I.A., Olarinoye, N.O., Adie, D.B. & Okuofu, C.A. (2006). Adsorption isotherms of Pb(II), Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11), 2368–2376.10.3923/jas.2006.2368.2376Search in Google Scholar

25. Olayinka, O.K., Oyedeji, O.A. & Oyeyiola, O.A. (2009). Removal of chromium and nickel ions from aqueous solution by adsorption on modified coconut husk. Afr. J. Environ. Sci. Technol. 3(10), 286–293. DOI: 10.5897/AJEST09.053.Search in Google Scholar

26. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.10.1016/j.jhazmat.2009.01.05019264402Search in Google Scholar

27. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1-2), 283–288. DOI: 10.1016/j.jhazmat.2006.12.019.10.1016/j.jhazmat.2006.12.01917196328Search in Google Scholar

28. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.10.1016/j.jhazmat.2008.11.00319097690Search in Google Scholar

29. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.10.1016/j.jhazmat.2008.08.08918842337Search in Google Scholar

30. Wu, S., Huang, J., Zhuo, C., Zhang, F., Sheng, W. & Zhu, M. (2016). One-Step Fabrication of Magnetic Carbon Nanocomposite as Adsorbent for Removal of Methylene Blue. J. Inorg. Organomet. Polym. Mater. 26(3), 632–639. DOI: 10.1007/s10904-016-0355–1.10.1007/s10904-016-0355-1Search in Google Scholar

31. He, F., Fan, J., Ma, D., Zhang, L., Leung, C. & Chan, H.L. (2010). The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11), 3139–3144. DOI: 10.1016/j.carbon.2010.04.052.10.1016/j.carbon.2010.04.052Search in Google Scholar

32. Hao, Y., Wang, Z., Gou, J. & Dong, S. (2015). Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide nanocomposite. Arabian J. Chem. http://dx.doi.org/10.1016/j.arabjc.2015.07.01.Search in Google Scholar

33. Qu, S., Huang, F., Yu, S., Chen, G. & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160, 643–647. DOI: 10.1016/j.jhazmat.2008.03.037.10.1016/j.jhazmat.2008.03.03718430510Search in Google Scholar

34. Zhu, J., Guo, H.G.J., Chen, M., Wei, H., Luo, Z., Colorado, H.A., Yerra, N., Ding, D., Ho, T.C., Haldolaarachchige, N., Hopper, J., Young, D.P., Guo, Z. & Wei, S. (2014). Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J. Mater. Chem. A 2, 2256–2265. DOI: 10.1039/C3TA13957C.10.1039/C3TA13957CSearch in Google Scholar

35. Pełech, I. (2010). Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Technol. 12(3), 45–49. DOI: 10.2478/v10026-010-0033-y.10.2478/v10026-010-0033-ySearch in Google Scholar

36. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Scientific Bulletin of the Technical University of Lodz. Food Chemistry and Biotechnology 74(1081), 5–11.Search in Google Scholar

37. Li, H., Zhao, N., He, C., Shi, C., Du, X. & Li, J. (2008). Low temperature fabrication of hollow carbon nanospheres over Ni/Al2O3 by the catalytic method. J. Alloys Comp. 465, 387–390. DOI: 10.1016/j.jallcom.2007.10.090.10.1016/j.jallcom.2007.10.090Search in Google Scholar

38. Canete-Rosales, P., Ortega, V., Álvarez-Lueje, A., Bollo, S., González, M., Ansón, A. & Martínez, M.T. (2012). Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim. Acta 62, 163–171. DOI: 10.1016/j.electacta.2011.12.043.10.1016/j.electacta.2011.12.043Search in Google Scholar

39. Kolacyak, D., Ihde, J., Merten, C., Hartwig, A. & Lommatzsch, U. (2011). Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet. J. Coll. Inter. Sci. 359, 311–317. DOI: 10.1016/j.jcis.2011.03.069.10.1016/j.jcis.2011.03.069Search in Google Scholar

40. Estévez-Martínez, Y., Velasco-Santos, C., Martínez-Hernández, A.L., Delgado, G., Cuevas-Yáñez, E., Alaníz-Lumbreras, D., Duron-Torres, S. & Castaño, V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J Nanomat. 2013, 1–9. DOI: 10.1155/2013/702157.10.1155/2013/702157Search in Google Scholar

41. Coates, J.P. (2000). A Practical Approach to the Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd., Chichester.10.1002/9780470027318.a5606Search in Google Scholar

42. Chen, J., Chen, Q., Ma, Q., Li, Y. & Zhu, Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd–Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356, 114–120. DOI: 10.1016/j.molcata.2011.12.032.10.1016/j.molcata.2011.12.032Search in Google Scholar

43. Helminiak, A., Mijowska, E. & Arabczyk, W. (2013). Characterization of carbon deposit with controlled carburization degree. Mater. Sci. Pol. 31(1), 29–35. DOI: 10.2478/s13536-012-0063-7.10.2478/s13536-012-0063-7Search in Google Scholar

44. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.10.1016/j.dyepig.2006.09.008Search in Google Scholar

45. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.Search in Google Scholar

46. Ai, L., Zhou, Y. & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77. DOI: 10.1016/j.desal.2010.08.004.10.1016/j.desal.2010.08.004Search in Google Scholar

47. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227. DOI: 10.1016/S0960-8524(97)00055-2.10.1016/S0960-8524(97)00055-2Search in Google Scholar

48. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 75–83. DOI: 10.1002/app.1986.070310108.10.1002/app.1986.070310108Search in Google Scholar

49. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/1618-2863(200204).Search in Google Scholar

50. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.10.1016/j.biortech.2007.05.070Search in Google Scholar

51. Ho, Y.S., Jhonwase, D.A. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332. DOI: 10.1016/0043–1354(94)00236-3.Search in Google Scholar

52. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.10.1016/j.cej.2007.04.007Search in Google Scholar

53. Huang, C., Ying-Chien, C. & Ming-Ren, L. (1996). Adsorption of Cu(II) and Ni(II) by palletized biopolimer. J. Hazard. Mater. 45, 265–267. DOI: 10.1016/0304-3894(95)00096-8.10.1016/0304-3894(95)00096-8Search in Google Scholar

54. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.10.1021/je900619dSearch in Google Scholar

55. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.10.1016/j.jhazmat.2005.03.02415878798Search in Google Scholar

56. Johnson, C.D. & Worrall, F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 41, 2229–2235. DOI: 10.1016/j.watres.2007.01.047.10.1016/j.watres.2007.01.04717360021Search in Google Scholar

57. Kinhikar, V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6), 6–11. ISSN 2231-606X.Search in Google Scholar

58. Yueming Ren, N.Y. (2011). Graphene/δ-MnO 2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7. DOI: 10.1016/j.cej.2010.08.010.10.1016/j.cej.2010.08.010Search in Google Scholar

59. Jha, V.K., Matsuda, M. & Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 160, 148–153. DOI: 10.1016/j.jhazmat.2008.02.107.10.1016/j.jhazmat.2008.02.10718417279Search in Google Scholar

60. Thamilarasu, P., Sivakumar, P. & Karunakaran, K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5), 414–420.Search in Google Scholar

61. Zhang, X. & Wang, X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10, e0117077. DOI: 10.1371/journal.pone.0117077.10.1371/journal.pone.0117077431560125647398Search in Google Scholar

62. Karagoz, S., Tay, T., Ucar, S. & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99, 6214–6222. DOI: 10.1016/j.biortech.2007.12.019.10.1016/j.biortech.2007.12.019Search in Google Scholar

63. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232. DOI: 10.1016/S0043–1354(02)00265-8.10.1016/S0043-1354(02)00265-8Search in Google Scholar

64. Jaycock, M.J. & Parfitt, G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd., Onichester.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering