Open Access

Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs)


Cite

1. March, J. (1992). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (7th ed.). New York, USA: John Wiley & Sons.Search in Google Scholar

2. Song, A., Wang, X. & Lam, K.S. (2003). A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett. 44(9), 1755–1758. DOI:10.1016/S0040-4039(03)00108-4.10.1016/S0040-4039(03)00108-4Search in Google Scholar

3. Bigi, F., Chesini, L., Maggi, R. & Sartori, G.J. (1999). Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids. J. Org. Chem. 64(3), 1033–1035. DOI: 10.1021/jo981794r.10.1021/jo981794rSearch in Google Scholar

4. Flachsmann, F. (2013). Fragrance compounds. U.S. Patent No. 8575386B2. Duebendorf C.H.: United States Patent Application.Search in Google Scholar

5. Hoshino, M., Sugiyama, M., Kawamata, A., Joukura, H. & Imokawa, G. 1994. Naphtalenmethylenemalonic diesters and UV absorbers and cosmetic compositions containing the diesters. EU Pat. EP 663206A1.Search in Google Scholar

6. Beutler, U., Fuenfschilling, P.C. & Steinkemper, A. (2007). An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II. Org. Process Res. Dev. 11(3), 341–343. DOI: 10.1021/op060244p.10.1021/op060244pSearch in Google Scholar

7. Martinez, C.A., Hu, S., Dumond, Y., Tao, J., Kelleher, P. & Tully, L. (2008). Development of a chemoenzymatic manufacturing process for pregabalin. Org. Process Res. Dev. 12(3), 392–398. DOI: 10.1021/op7002248.10.1021/op7002248Search in Google Scholar

8. Walker, S.D., Borths, C.J., DiVirgilio, E., Huang, L., Liu, P., Morrison, H., Sugi, K., Tanaka, M., Woo, J.C.S. & Faul, M.M. (2011). Development of a scalable synthesis of a GPR40 receptor agonist. Org. Process Res. Dev. 15(3), 570–580. DOI: 10.1021/op1003055.10.1021/op1003055Search in Google Scholar

9. Menegatti, R. (2012). Designing highly efficient solvents for the Knoevenagel condensation: two novel dicationic dimethyl phosphate ionic liquids. In: M. Kidwai & N.K. Mishra (Eds.), Green Chemistry – Environmentally Benign Approaches (pp. 13–32). Intech, Rijeka.Search in Google Scholar

10. Anastas, P.T. & Warner, J.C. (1998). Green Chemistry: Theory and Practice (1st ed.). Oxford University Press, New York.Search in Google Scholar

11. Anastas, P.T. & Kirchhoff, M.M. (2002). Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35(9), 686–694. DOI: 10.1021/ar010065m.10.1021/ar010065mSearch in Google Scholar

12. Reddy, T.I. & Verma, R.S. (1997). Rare earth-exchanged NaY zeolite-promoted Knoevenagel condensation. Tetrahedron Lett. 38(10), 1721–1724. DOI: 10.1016/S0040-4039(97)00180-9.10.1016/S0040-4039(97)00180-9Search in Google Scholar

13. McCluskey, A., Robinson, P.J., Hill, T., Scott, J.L. & Edwards, J.K. (2002). Green chemistry approaches to the Knoevenagel condensation: comparison of ethanol, water and solvent free (dry grind) approaches. Tetrahedron Lett. 43(17), 3117–3120. DOI: 10.1016/S0040-4039(02)00480-X.10.1016/S0040-4039(02)00480-XSearch in Google Scholar

14. Bigi, F., Conforti, M.L., Maggi, R., Piccinno, A. & Sartori, G. (2000). Clean Synthesis in Water: Uncatalysed Preparation of Ylidenemalononitriles. Green Chem. 2, 101–103. DOI: 10.1039/B001246G.10.1039/b001246gSearch in Google Scholar

15. Gomes, M.N., de Oliveira, C.M.A., Garrote, C.F.D., de Oliveira, V. & Menegatti, R. (2011). Condensation of ethyl cyanoacetate with aromatic aldehydes in water, catalyzed by morpholine. Synth. Commun. 41(1), 52–57. DOI: 10.1080/00397910903531771.10.1080/00397910903531771Search in Google Scholar

16. Mallouk, S., Bougrin, K., Laghzizil, A. & Benhida, R. (2010). Microwave-Assisted and Efficient Solvent-free Knoevenagel Condensation. A Sustainable Protocol Using Porous Calcium Hydroxyapatite as Catalyst. Molecules 15(2), 813–823. DOI: 10.3390/molecules15020813.10.3390/molecules15020813Search in Google Scholar

17. Tahmassebi, D., Wilson, L.J.A. & Kieser, J.M. (2009). Knoevenagel Condensation of Aldehydes with Meldrum’s Acid in Ionic Liquids. Synth. Commun. 39(14), 2605–2613. DOI: 10.1080/00397910802663345.10.1080/00397910802663345Search in Google Scholar

18. Otaibi, A.A., Gordon, C.P., Gilbert, J., Sakoff, J.A. & McCluskey, A. (2014), The influence of ionic liquids on the Knoevenagel condensation of 1H-pyrrole-2-carbaldehyde with phenyl acetonitriles – cytotoxic 3-substituted-(1H-pyrrol-2-yl)acrylonitriles. RSC Adv. 4, 19806–19813. DOI: 10.1039/c3ra47418f.10.1039/c3ra47418fSearch in Google Scholar

19. Morrison, D.W., Forbes, D.C. & Davis, Jr J.H. (2001). Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett. 42(35), 6053–6055. DOI: 10.1016/S0040-4039(01)01228-X.10.1016/S0040-4039(01)01228-XSearch in Google Scholar

20. Suresh, J. & Sandhu, J. (2013). Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]. Org. Med. Chem. Lett. 3:(2), 1–6. DOI: 10.1186/2191-2858-3-2.10.1186/2191-2858-3-2359950723458122Search in Google Scholar

21. Moosavi-Zare, A.R., Zolfigol, M.A., Khaledian, O., Khakyzadeh, V., Farahani, M.D. & Kruger, H.G. (2014). Tandem Knoevenagel-Michael-cyclocondensation reactions of malononitrile, various aldehydes and dimedone using acetic acid functionalized ionic liquid. New J. Chem. 38, 2342–2347. DOI: 10.1039/C3NJ01509B.10.1039/c3nj01509bSearch in Google Scholar

22. Zhang, J., Zhang, Y. & Zhou, Z. (2014). Hydroxyl ammonium ionic liquid-catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinediones under solvent-free conditions. Green Chem. Lett. Rev. 7(1), 90–94. DOI: 10.1080/17518253.2014.895866.10.1080/17518253.2014.895866Search in Google Scholar

23. Ying, A., Ni, Y., Xu, S., Liu, S., Yang, J. & Li, R. (2014). Novel DABCO Based Ionic Liquids: Green and Efficient Catalysts with Dual Catalytic Roles for Aqueous Knoevenagel Condensation. Ind. Eng. Chem. Res. 53(14), 5678–5682. DOI: 10.1021/ie500440w.10.1021/ie500440wSearch in Google Scholar

24. Zhao, S., Wang, X. & Zhang, L. (2013). Rapid and efficient Knoevenagel condensation catalyzed by a novel protic ionic liquid under ultrasonic irradiation. RSC Adv. 3, 11691–11696. DOI: 10.1039/C3RA40809D.10.1039/c3ra40809dSearch in Google Scholar

25. Tzani, A., Douka, A., Papadopoulos, A., Pavlatou, E.A., Voutsas, E. & Detsi, A. (2013). Synthesis of Biscoumarins Using Recyclable and Biodegradable Task-Specific Ionic Liquids. ACS Sustainable Chem. Eng. 1(9), 1180–1185. DOI: 10.1021/sc4001093.10.1021/sc4001093Search in Google Scholar

26. Siddiqui, Z.N. & Khan, K. (2014). [Et3NH][HSO4]-Catalyzed Efficient, Eco-Friendly, and Sustainable Synthesis of Quinoline Derivatives via Knoevenagel Condensation. ACS Sustainable Chem. Eng. 2(5), 1187–1194. DOI: 10.1021/sc500023q.10.1021/sc500023qSearch in Google Scholar

27. Hu, X., Zhang, B., Gao, Y. & Dong, S. (2014). Knoevenagel reactions catalyzed by ionic liquids. J. Chem. Pharm. Res. 6, 864–868. CODEN:JCPRC5 ISSN:0975-7384.Search in Google Scholar

28. Zicmanis, A. & Anteina, L. (2014). Dialkylimidazolium dimethyl phosphates as solvents and catalysts for the Knoevenagel condensation reaction. Tetrahedron Lett. 55(12), 2027–2028. DOI: 10.1016/j.tetlet.2014.02.035.10.1016/j.tetlet.2014.02.035Search in Google Scholar

29. Moriel, P., Garcia-Suarez, E.J., Martinez, M., Garcia, A.B., Montes-Moran, M.A., Calvino-Casilda, V. & Banares, M.A. (2010). Synthesis, characterization, and catalytic activity of ionic liquids based on biosources. Tetrahedron Lett. 51(37) 4877–4881. DOI: 10.1016/j.tetlet.2010.07.060.10.1016/j.tetlet.2010.07.060Search in Google Scholar

30. Ouyang, F., Zhou, Y., Li, Z.M., Hu, N. & Tao, D.J. (2014). Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions. Korean J. Chem. Eng. 31(8), 1377–1383. DOI: 10.1007/s11814-014-0077-4.10.1007/s11814-014-0077-4Search in Google Scholar

31. Fukumoto, K., Yoshizawa, M. & Ohno, H. (2005). Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc. 127(8), 2398–2399. DOI: 10.1021/ja043451i.10.1021/ja043451i15724987Search in Google Scholar

32. Allen, C.R., Richard, P.L., Ward, A.J., Van de Water, L.G.A., Masters, A.F. & Maschmeyer, T. (2006). Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett. 47(41), 7367–7373. DOI: 10.1016/j.tetlet.2006.08.007.10.1016/j.tetlet.2006.08.007Search in Google Scholar

33. Ossowicz, P., Janus, E., Schroeder, G. & Rozwadowski, Z. (2013). Spectroscopic studies of amino acid ionic liquid-supported Schiff bases. Molecules 18(5), 4986–5004. DOI: 10.3390/molecules18054986 18, 4986–5004.10.3390/molecules18054986626971023629755Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering