Cite

1. Bae, J., Lim, S., Jee, H., Kim, J.H., Yoo, Y.S. & Lee, T. (2007). Small stack performance of intermediate temperature operating solid oxide fuel cells using stainless steel interconnects and anode supported single cell. J. Power Sour. 172, 100–107. DOI: 10.1016/j.jpowsour.2007.01.093.10.1016/j.jpowsour.2007.01.093Search in Google Scholar

2. Tavazzi, I., Beretta, A., Groppi, G., Forzatti, P., Bao, X. & Xu, Y. (2004). An investigation of methane partial oxidation kinetics over Rh supported catalysts, Studies Surface Science Catalysis – Natural Gas Conversion VII, 147, Elsevier, Amsterdam, 163–168. DOI: 10.1016/S0167-2991(04)80045-4.10.1016/S0167-2991(04)80045-4Search in Google Scholar

3. Seyed-Reihani, S.A. & Jackson, G.S. (2010). Catalytic partial oxidation of n-butane over Rh catalysts for solid oxide fuel cell applications. Catal. Today, 155, 75–83. DOI: 10.1016/j.cattod.2009.03.032.10.1016/j.cattod.2009.03.032Search in Google Scholar

4. Lawrence, J. & Boltze, M. (2006). Auxiliary power unit based on a solid oxide fuel cell and fueled with diesel J. Power Sour. 154, 479–488. DOI: 10.1016/j.jpowsour.2005.10.036.10.1016/j.jpowsour.2005.10.036Search in Google Scholar

5. Frenzel, I., Loukou, A., Trimis, D., Schroeter, F., Mir, L., Marin, R., Egilegor, B., Manzanedo, J., Raju, G., de Bruijne, M., Wesseling, R., Fernades, S., Pereira, J.M.Ch., Vourliotakis, G., Founti, M. & Posdziech, O. (2012). Development of an SOFC based micro-CHP system in the framework of the European project FC-DISTRICT. Energy Proc. 28, 170–181. DOI: 10.1016/j.egypro.2012.08.051.10.1016/j.egypro.2012.08.051Search in Google Scholar

6. Kupilik, M. & Vincent, T.L. (2013). Control of a solid oxide fuel cell system with sensitivity to carbon formation. J. Power Sour. 222, 267–276. DOI: 10.1016/j.jpowsour.2012.08.083.10.1016/j.jpowsour.2012.08.083Search in Google Scholar

7. Pukrushpan, J., Stefanopoulou, A., Varigonda, S., Eborn, J. & Haugstetter, C. (2006). Control oriented model of fuel processor for hydrogen generation in fuel cell applications, Control Engine. Pract. 14(3), 277–293. DOI: 10.1016/j.conengprac.2005.04.014.10.1016/j.conengprac.2005.04.014Search in Google Scholar

8. Zhu, J., Zhang, D. & King, K.D. (2001). Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses. Fuel 80(7), 899–905. DOI: S0016-2361(00)00165-4.10.1016/S0016-2361(00)00165-4Search in Google Scholar

9. Larentis, A.L., de Resende, N.S., Salim, V.M.M. & Pinto, J.C. (2001). Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas. Appl. Catal. 215(1–2), 211–224. DOI: S0926-860X(01)00533-6.10.1016/S0926-860X(01)00533-6Search in Google Scholar

10, Xi, H., Sun, J. & Tsourapas, V. (2007). A control oriented low order dynamic model for planar SOFC using minimum Gibbs free energy method. J. Power Sour. 165(1), 253–266. DOI: 10.1016/j.jpowsour.2006.12.009.10.1016/j.jpowsour.2006.12.009Search in Google Scholar

11. Singhal, S. & Kendall, K. (2004). High temperature Solid Oxide Fuel Cells: Fundamentals, Des. Applicat. Elsev. Sci. ISBN: 978-1-85617-387-2.Search in Google Scholar

12. Larminie, J. & Dicks, A. (2003). Fuel Cell Systems Explained, 2nd Edition, Wiley. ISBN: 0-470-84857-X.10.1002/9781118878330Search in Google Scholar

13. Aguiar, P., Adjiman, C.S. & Brandon, N.P. (2006). Anode supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model based steady-state performance. J. Power Sour. 138(1–2), 120–136. DOI: 10.1016/j.jpowsour.2004.06.040.10.1016/j.jpowsour.2004.06.040Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering