Cite

1. Magdziarz, A. & Werle, S. (2014). Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manage. 34(1), 174–179. DOI: 10.1016/j.wasman.2013.10.033.10.1016/j.wasman.2013.10.03324238993Search in Google Scholar

2. Hamawand, I., Pereira da Silva, W., Eberhard, F. & Antille, D.L. (2015). Issues related to waste sewage sludge drying under superheated steam. Pol. J. Chem. Technol. 17(4), 5–14. DOI: 10.1515/pjct-2015-0062.10.1515/pjct-2015-0062Search in Google Scholar

3. Smith, S.R. (2009). Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos. Transl. Roy. Soc. A. 367, 4005–4041. DOI: 10.1080/10807039.2014.930295.10.1080/10807039.2014.930295Search in Google Scholar

4. Gondek, K. & Mierzwa-Hersztek, M. (2016). The effect of thermal conversion of municipal sewage sludge on the content of Cu, Cd, Pb and Zn and phytotoxicity of biochars. J. Elem., DOI: 10.5601/jelem.2016.21.1.1116 (in press).10.5601/jelem.2016.21.1.1116Search in Google Scholar

5. Oleszczuk, P., Hale, E.S., Lehmann, J. & Cornelissen, G. (2012). Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Biores. Technol. 111, 84–91. DOI: 10.1016/j.biortech.2012.02.030.10.1016/j.biortech.2012.02.03022391590Search in Google Scholar

6. IBI. 2012. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil. 2012; (cited 14 March, 2015).Search in Google Scholar

7. Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H. & Xing, B. (2011). Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Biores. Tech. 102, 5757–5763. DOI: 10.1016/j.biortech.2011.03.038.10.1016/j.biortech.2011.03.03821463938Search in Google Scholar

8. Chen, W., Han, J., Qin, L., Furuuchi, M. & Mitsuhiko, H. (2014). The emission characteristics PAHs during coal and sewage sludge co-combustion in a drop tube furnace. Aerosol Air Qual. Res. 14, 1160–1167. DOI: 10.4209/aaqr.2013.06.019210.4209/aaqr.2013.06.0192Search in Google Scholar

9. Busch, D., Stark, A., Kammann, C.I. & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to bio-char from pyrolysis. Ecotoxicol. Environ. Saf. 97, 59–66. DOI: 10.1016/j.ecoenv.2013.07.003.10.1016/j.ecoenv.2013.07.00323921220Search in Google Scholar

10. Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T., Shitumbanuma, V., O’Toole, A., Sundqvist, K.L., Arp, H.P.H. & Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 46, 2830–2838. DOI: 10.1021/es203984k.10.1021/es203984k22321025Search in Google Scholar

11. Oleszczuk, P., Jośko, I. & Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater. 260, 375–382. DOI: 10.1016/j.jhazmat.2013.05.044.10.1016/j.jhazmat.2013.05.04423792930Search in Google Scholar

12. Gondek, K., Baran, A. & Kopeć, M. (2014). The effect of low-temperature transformation of mixtures of sewage sludge and plant materiale on content, leachability and toxicity of heavy metals. Chemosphere 117, 33–39. DOI: 10.1016/j.chemosphere.2014.05.032.10.1016/j.chemosphere.2014.05.032Search in Google Scholar

13. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M. & Usman, A.R.A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379. DOI: 10.1016/j.biortech.2012.12.165.10.1016/j.biortech.2012.12.165Search in Google Scholar

14. Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc. 60, 309–319. DOI: 10.1021/ja01269a023.10.1021/ja01269a023Search in Google Scholar

15. Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Amer. Chem. Soc. 73, 373–380. DOI: 10.1021/ja01145a126.10.1021/ja01145a126Search in Google Scholar

16. Dubinin, M.M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241. DOI: 10.1021/cr60204a006.10.1021/cr60204a006Search in Google Scholar

17. Jindo, K., Suto, K., Matsumoto, K., Garcia, C., Sonoki, T. & Sanchez-Monedero, M.A. (2012). Chemical and biochemical chracterisation of biochar-blended composts prepared from poultry manure. Biores. Technol. 110, 396–404. DOI: 10.1016/j.biortech.2012.01.120.10.1016/j.biortech.2012.01.120Search in Google Scholar

18. Agrafioti, E., Bouras, G., Kalderis, D. & Diamadopulos, E. (2013). Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 101, 72–78. DOI: 10.1016/j.jaap.2013.02.010.10.1016/j.jaap.2013.02.010Search in Google Scholar

19. Maliszewska-Kordybach, B., Smreczak, B. & Klimkowicz-Pawlas, A. (2009). Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci. Total Environ. 12(1), 3746–3753. DOI: 10.1016/j.scitotenv.2009.01.010.10.1016/j.scitotenv.2009.01.010Search in Google Scholar

20. Nisbet, I.C.T. & LaGoy, P.K. (1992). Toxic (TEFs) for poly-cyclic aromatic hydrocarbons (PAHs). Reg. Toxicol. Pharmacol. 16, 290–300. DOI: 10.1016/0273-2300(92)90009-X.10.1016/0273-2300(92)90009-XSearch in Google Scholar

21. Knoll, G.F. (2010). Radiation Detection and Measurement (4-th edition). Wiley Publishing. pp. 860.Search in Google Scholar

22. Gilmore, G. & Hemingway, J.D. (2011). Practical Gamma Ray Spectrometry, Wiley Publishing. pp. 309. http://www.amazon.com/Practical-Gamma-ray-Spectroscopy-Gordon-Gilmore/dp/0470861967Search in Google Scholar

23. MicrobicsCorporation. (1992). Microtox Manual Toxicity Testing Handbook. Carlsbad, CA, USA.Search in Google Scholar

24. Kim, H.W., Han, S.K. & Shin, H.S. (2003). The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag. Res. 21(6), 515–526. DOI: 10.1177/0734242X0302100604.10.1177/0734242X030210060414986713Search in Google Scholar

25. Ghetti, P., Ricca, L. & Angelini, L. (1996). Thermal analysis of biomas and corresponding pyrolysis products. Fuel 75(5), 565-573. DOI: 10.1016/0016-2361(95)00296-0.10.1016/0016-2361(95)00296-0Search in Google Scholar

26. Keiluweit, M., Kleber, M., Sparrow, M.A., Simoneit, B.R.T. & Prahl, F.G. (2012). Solvent extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environ. Sci. Technol. 46, 9333–9341. DOI: 10.1021/es302125k.10.1021/es302125k22844988Search in Google Scholar

27. Kołtowski, M. & Oleszczuk, P. (2015). Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecolog. Engin. 75, 79–85. http://dx.DOI.org/10.1016/j.ecoleng.2014.11.00410.1016/j.ecoleng.2014.11.004Search in Google Scholar

28. Gondek, K., Kopeć, M., Chmiel, M. & Spałek, I. (2008). Response of Zea Maize and microorganisms to soil pollution with polycyclic aromatic hydrocarbons (PAHs). Pol. J. Environ. Stud. 17(6), 875–880. http://www.pjoes.com/pdf/17.6/875-880.pdfSearch in Google Scholar

29. Gondek, K., Mierzwa-Hersztek, M., Baran, A., Szostek, M., Pieniążek, R., Pieniążek, M., Stanek-Tarkowska, J. & Noga, T. (2016). The Effect of Low-Temperature Conversion of Plant Materials on the Chemical Composition and Ecotoxicity of Biochars. Waste Biom. Valor. DOI: 10.1007/s12649-016-9621-2.10.1007/s12649-016-9621-2Search in Google Scholar

30. Vacha, R., Cechmankova, J. & Skala, J. (2010). Polycyclic aromatic hydrocarbons in soil and selected plants. Plant Soil Environ. 56, 434–443. http://www.agriculturejournals.cz/publicFiles/95159.pdf10.17221/7/2010-PSESearch in Google Scholar

31. Masto, R.E. George, J. & Ram, L.C. (2015). PAHs and potentially toxic elements in the fly ash and bed ash of biomass fired power plants. Fuel Proc. Technol. 132, 139–152. DOI: 10.1016/j.fuproc.2014.12.036.10.1016/j.fuproc.2014.12.036Search in Google Scholar

32. Van den Heuvel, H. &Van Noort, P.C.M. (2004). Removal of indigenous compounds to determine maximum capacities for adsorption of phenanthrene by sediments. Chemosphere 54, 763–769. DOI: 10.1016/j.chemosphere.2003.09.005.10.1016/j.chemosphere.2003.09.00514602109Search in Google Scholar

33. Guilloteau, A., Nguyen, M.L., Bedjanian, Y. & Le Bras, G. (2008). Desorption of polycyclic aromatic hydrocarbons from soot surface: pyrene and fluoranthene. J. Phys. Chem. A. 112, 10552–10559. DOI: 10.1021/jp803043s.10.1021/jp803043s18826193Search in Google Scholar

34. Zhu, Y.G. & Smolders, E. (2000). Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J. Exp. Bot. 51(351), 1635–1645. DOI: 10.1093/jexbot/51.351.1635.10.1093/jexbot/51.351.163511053452Search in Google Scholar

35. Vinogradov, A.P. (1957). Biological role of potassium-40. Nature 180, 507–508. DOI: 10.1038/180507a0.10.1038/180507a013464864Search in Google Scholar

36. Rosik-Dulewska, C. & Dulewski, J. (1989). The chemical composition and the content of selected radionuclides in plants cultivated on an ash dump of the halemba power plant. Soil Sci. Ann. XL(2), 151–169. http://ssa.ptg.sggw.pl/files/artykuly/1989_40/1989_tom_40_nr_2/tom_40_nr_2_151-169.pdfSearch in Google Scholar

37. Królak, E., Filipek, K. & Bardzka, E. (2013). Comparative analysis of sewage sludge from two sewage treatment plants: in Mrozy and Siedlce (Mazowieckie Province). Environ. Prot. Nat. Res. 24, 57–61. DOI: 10.2478/oszn-2013-0019.10.2478/oszn-2013-0019Search in Google Scholar

38. Christofi, N., Hoffmann, C. & Tosh, L. (2002). Hormesis responses of free and immobilized light – emitting bacteria. Ecotoxicol. Environ. Saf. 52, 227–231. DOI: http://dx.DOI.org/10.1006/eesa.2002.220310.1006/eesa.2002.220312297084Search in Google Scholar

39. Jaiswal, A.K., Elad, Y., Graber, E.R. & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol. Biochem. 69, 110–118. DOI: 10.1016/j.soilbio.2013.10.051.10.1016/j.soilbio.2013.10.051Search in Google Scholar

40. Mierzwa-Hersztek, M., Gondek, K. & Baran, A. (2016). Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl. Soil Ecol. 105, 144–150. DOI: 10.1016/j.apsoil.2016.04.006.10.1016/j.apsoil.2016.04.006Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering