Cite

1. Fergus, J.W. (2010). Recent developments in cathode materials for lithium ion batteries. J. Pow. Sou. 195, 939–954. DOI: 10.1016/j.jpowsour.2009.08.089.10.1016/j.jpowsour.2009.08.089Search in Google Scholar

2. Antolini, E. (2004). LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Sol. State Ionics. 170, 159–171. DOI: 10.1016/j.ssi.2004.04.003.10.1016/j.ssi.2004.04.003Search in Google Scholar

3. Rougier, A., Bravereau, P. & Delmas, D. (1996). Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies. J. Electrochem. Soc.143, 1168–1175. DOI: 10.1149/1.1836614.10.1149/1.1836614Search in Google Scholar

4. Liu, H., Yang, Y. & Zhang, J. (2007). Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. J. Pow. Sou. 173, 556–561. DOI: 10.1016/j.jpowsour.2007.04.083.10.1016/j.jpowsour.2007.04.083Search in Google Scholar

5. Kanno, R., Kubo, H., Kawamoto, Y., Kamiyama, T., Izumi, F., Takeda, Y. & Takano, M. (1994). Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides. Sol. State Chem. 110, 216–225. DOI: 10.1006/jssc.1994.1163.10.1006/jssc.1994.1163Search in Google Scholar

6. Pérès, J.P., Demourgues, A. & Delmas, C. (1998). Structural investigations on Li0.65zNi1+zO2 cathode material: XRD and EXAFS studies. Sol. State Ion. 111, 135–144. DOI: 10.1016/S0167-2738(98)00122-2.10.1016/S0167-2738(98)00122-2Search in Google Scholar

7. Li, D., Peng, Z., Ren, H., Guo, W. & Zhou, Y. (2008). Synthesis and characterization of LiNi1xCoxO2 for lithium batteries by a novel method. Mater. Chem. Phys. 107, 171–176. DOI: 10.1021/cm0102537.10.1021/cm0102537Search in Google Scholar

8. Baskaran, R., Kuwata, N., Kamishima, O., Kawamura, J. & Selvasekarapandian, S. (2009). Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery. Sol. State Ion. 180, 636–643. DOI: 10.1016/j.ssi.2008.11.012.10.1016/j.ssi.2008.11.012Search in Google Scholar

9. Sakamoto, K., Hirayama, M., Sonoyama N., Mori, D., Yamada, A., Tamura, K., Mizuki, J. & Kanno, R. (2009). Surface Structure of LiNi0.8Co0.2O2: a New Experimental Technique Using in Situ X-ray Diffraction and Two-Dimensional Epitaxial Film Electrodes. Chem. Mater. 21(13), 2632–2640. DOI: 10.1021/cm8033559.10.1021/cm8033559Search in Google Scholar

10. Martha, S.K., Sclar, H., Framowitz, Z.S., Kovacheva, D., Saliyski, N., Gofer, Y., Sharon, P., Golik, E., Markovsky, B. & Aurbach, D. (2009). A comparative study of electrodes comprising nanometric and submicron particles of LiNi-0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J. Pow. Sou. 189, 248–255. DOI: 10.1016/j.jpowsour.2008.09.090.10.1016/j.jpowsour.2008.09.090Search in Google Scholar

11. Lu, C.H. & Lin, Y.K. (2009). Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. J. Pow. Sou. 189, 40–44. DOI: 10.1016/j.jpowsour.2008.12.036.10.1016/j.jpowsour.2008.12.036Search in Google Scholar

12. Koksbang, R. (1991). Reversibility of the electrochemical lithium insertion in “Cr3O8”—comparison with LiCr3O8. Electrochim. Acta 36, 127–133. DOI: 10.1016/0013-4686(91)85189-E.10.1016/0013-4686(91)85189-ESearch in Google Scholar

13. Vidya, R., Ravindran, P., Kjekshus, A. & Fjellvåg, H. (2006). Crystal and electronic structures of Cr3O8 and LiCr3O8: Probable cathode materials in Li batteries. Phys. Rev. B. 73, 235113-1-235113-13. DOI: 10.1103/PhysRevB.73.235113.10.1103/PhysRevB.73.235113Search in Google Scholar

14. Naoki, K. & Feng, W. (2010). A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes. Materials 3(7), 3818–3844. DOI: 10.3390/ma3073818.10.3390/ma3073818544579728883313Search in Google Scholar

15. Mukherjee, A., Combs, R., Chattopadhyay, J. & Abmayr, D.W. (2008). Attachment of nitrogen and oxygen centered radicals to single-walled carbon nanotubes salts. Chem. Mater. 20, 7339–7343. DOI: 10.1021/cm8014226.10.1021/cm8014226Search in Google Scholar

16. Chen, Y., Haddon, R.C., Fang, S., Rao, A.M., Eklund, P.C., Lee, W.H., Dicekey, E.C., Grulke, E.A., Pendergrass, J.C., Chavan, A., Haley, B.E. & Smalley, R.E. (1998). Chemical attachment of organic functional groups to single-walled carbon nanotubes material. J. Mater. Res. 13, 2433–2431. DOI: 10.1557/JMR.1998.0337.10.1557/JMR.1998.0337Search in Google Scholar

17. Gao, C., He, H., Zhou, L., Zheng, X. & Zhang, Y. (2009). Scalable Functional Group Engineering of Carbon Nanotubes by Improved One-Step Nitrene Chemistry. Chem. Mater. 21, 360–370. DOI: 10.1021/cm802704c.10.1021/cm802704cSearch in Google Scholar

18. Han, J. & Gao, Ch. (2006). Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(3), 213–226. DOI: 10.5101/nml.v2i3.p213-226.10.1007/BF03353643Search in Google Scholar

19. Dimitrios, T., Tagmatarchis, N., Bianco, A. & Prato, M. (2006). Chemistry of Carbon Nanotubes. Chem. Rev.106, 1105–1136. DOI: 10.1021/cr050569o.10.1021/cr050569o16522018Search in Google Scholar

20. Khabashesku, V. N., Billups, W. E. & Margrave, J.L. (2002). Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions. Acc. Chem. Res. 35, 1087–1095. DOI: 10.1021/ar020146y.10.1021/ar020146y12484797Search in Google Scholar

21. Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y. & Ajayan, P.M. (2003). Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. J. Am. Chem. Soc.125, 9258–9259. DOI: 10.1021/ja0354418.10.1021/ja035441812889931Search in Google Scholar

22. Drabowicz, J., Krasowska, D., Janicka, M., Zajac, A., Wach-Panfiłow, P., Ciesielski, W., Michalski, O., Kulawik, D., Pyzalska, M., Dudzinski, B., Pokora-Sobczak, P., Urbaniak, M. & Makowski, T. (2016). A stereogenic heteroatom-containing substituent as an inducer of chirality in the derivatives of thiophenes (mono, oligo, and poly), fullerenes C60, and multiwalled nanotubes, Phosp., Sulf. Silic. 191, 211–219. DOI: 10.1080/10426507.2015.1079198.10.1080/10426507.2015.1079198Search in Google Scholar

23. Pyzalska, M., Zdanowska, S., Kulawik, D., Pavlyuk, V., Drabowicz, J. & Ciesielski, W. (2016). Właściwości fizykochemiczne bromowanych wielościennych nanorurek węglowych funkcjonalizowanych tiofosforanem O–metylo–O2–naftylo-–LN–metyloefedryniowym, Przem. Chem. 94/12, 2189–2194. DOI: 10.15199/62.2015.12.20.10.15199/62.2015.12.20Search in Google Scholar

24. Bulusheva, L.G., Okotrub, A.V., Flahaut, E., Asanov, I.P., Gevko, P.N., Koroteev, V.O., Fedoseeva, Y.V., Yaya, A. & Ewels, C.P. (2012). Bromination of Double-Walled Carbon Nanotubes. Chem. Mater. 24, 2708–2715. DOI: 10.1021/cm300630.Search in Google Scholar

25. Souza–Filho, A.G., Endo, M., Muramatsu, H., Hayashi, T., Kim, Y.A., Barros, E.B., Akuzawa, N., Samzonidze, G.G., Saito, R. & Dresselhaus, M.S. (2006). Resonance Raman scattering studies in Br-2-adsorbed double-wall carbon nano-tubes. Phys. Rev. B. 73, 235413-1–235413-12. DOI: 10.1103/PhysRevB.73.235413.10.1103/PhysRevB.73.235413Search in Google Scholar

26. A process for preparing iodinated carbon nanotubes. Application to the Polish Patent Office No. P. 395834.Search in Google Scholar

27. Drabowicz, J., Ciesielski, W. & Kulawik, D.: Polish patent pending P-409662.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering