Open Access

Epoxidation of allyl-glycidyl ether with hydrogen peroxide over Ti-SBA-15 catalyst and in methanol medium


Cite

1. Chemical Book (2015, September). Diglycidyl ether. Retrieved November 19, 2015, from http://www.chemicalbook.com/ChemicalProductProperty_EN_CB9725926.htmSearch in Google Scholar

2. Kota, S., Devraj, R., Adibhatla Kali Satya, B.R. & Vankaiah Chowdary, N. (2009). W.O. Patent No. 2009153798. World Intellectual Property Organization.Search in Google Scholar

3. Sionkowska, A., Skopinska-Wisniewska, J., Gawron, M., Kozlowska, J. & Planecka, A. (2010). Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int. J. Biol. Macromolec. 47, 570–577. DOI: 10.1016/j.ijbiomac.2010.08.004.10.1016/j.ijbiomac.2010.08.00420713081Search in Google Scholar

4. Debdi, N., Starch, M.S., Lavaux, V., Canfield, L. & Van Reeth, I. (2006). UK Patent No. 2422605A. United Kingdom Trademark Office.Search in Google Scholar

5. Song, K.Y. (2015). U.S. Patent No. 20150010843. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

6. Ciampini, D. & Gino, L. (2013). U.S. Patent No. 20130271526. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

7. De Vries, T.S., Davies, D.R., Miller, M.C. & Cynecki, W.A. (2014). Kinetics of the Cationization of Cotton. Ind. Eng. Chem. Res. 53, 9686–9694. DOI: 10.1021/ie500836n.10.1021/ie500836nSearch in Google Scholar

8. Mizusawa, A. (2012). U.S. Patent No. 20120060339. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

9. Czub, P., Bończa-Tomaszewski, Z., Penczek, P. & Pielichowski, J. (2002). Chemia i technologia żywic epoksydowych. Wyd. Naukowo-Techniczne. Warszawa. 226–231.Search in Google Scholar

10. Chen, L., Wang, Y., Ren, Q. & Cheng, X. (2014). CN Patent No. 104231999. China Patent & Trademark Office.Search in Google Scholar

11. Natu, P. (2011). U.S. Patent No. 20110049834. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

12. Iaych, K., Dumarçay, S., Fredon, E., Gérardin, C., Lemor, A. & Gérardin, P. (2011). Microwave-Assisted Synthesis of polyglycerol from glycerol carbonate. J. Appl. Polym. Sci. 120, 2354–2360. DOI: 10.1002/app.33446.10.1002/app.33446Search in Google Scholar

13. Wu, L., Lal, J., Simon, K.A., Burton, E.A. & Luk, Y.Y. (2009). Nonamphiphilic Assembly in Water: Polymorphic Nature, Thread Structure, and Thermodynamic Incompatibility. J. Am. Chem. Soc. 131, 7430–7443. DOI: 10.1021/ja9015149.10.1021/ja901514919422237Search in Google Scholar

14. Mizuno, N., Kamata, K. & Yamaguchi, K. (2012). Oxidative functional group transformations with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Catal. Today. 185, 157–161. DOI: 10.1016/j.cattod.2011.07.007.10.1016/j.cattod.2011.07.007Search in Google Scholar

15. Kamata, K., Sugahara, K., Yonehara, K., Ishimoto, R. & Mizuno, N. (2011). Efficient Epoxidation of Electron-Deficient Alkenes with Hydrogen Peroxide Catalyzed by [γ-PW10O38V2(μ-OH)2]3–. Chem. Eur. J. 17, 7549–7559. DOI: 10.1002/chem.201101001.10.1002/chem.20110100121647994Search in Google Scholar

16. Wu, P., Liu, Y., He, M. & Tatsumi, T. (2004). A novel titanosilicate with MWW structure; Catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide. J. Catal. 228, 183–191. DOI: 10.1016/j.jcat.2004.09.001.10.1016/j.jcat.2004.09.001Search in Google Scholar

17. Wróblewska, A., Makuch, E. & Mojta, E. (2016). Advanced Catalytic Materials. Photocatalysis and Other Current Trends. Norena, L.E. & Wang, J.A (Eds.) Studies on Obtaining Diglycidyl Ether from Allyl-Glycidyl Ether over the Mesoporous Ti-SBA-15 Catalyst (pp. 123–140). Rijeka, Croatia: InTech. DOI: 10.5772/61881.10.5772/61881Search in Google Scholar

18. Gu, X.P., Ikeda, I. & Okahara, M. (1987). Stereoselective formation of allyl ethers by reaction of epoxides with organic chlorides under liquid-solid phase-transfer catalysis. Bull. Chem. Soc. Jpn. 60, 667–672. DOI: 10.1246/bcsj.60.667.10.1246/bcsj.60.667Search in Google Scholar

19. Makuch, E. & Wróblewska, A. (2013). Preparation of titanium-silicate catalyst Ti-SBA-15. Chemik 67, 811–816.Search in Google Scholar

20. Berube, F., Kleitz, F. & Kaliaguine, S. (2008). A comprehensive study of titanium-substituted SBA-15 mesoporous materials prepared by direct synthesis. J. Phys. Chem. 112, 14403–14411. DOI: 10.1021/jp803853m.10.1021/jp803853mSearch in Google Scholar

21. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 catalyst used in the process of allyl alcohol epoxidation with hydrogen peroxide. J. Adv. Oxid Technol. 17(1), 44–52.10.1515/jaots-2014-0106Search in Google Scholar

22. Wróblewska, A. & Makuch, E. (20120. The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reac. Kinet. Mech. Cat. 105, 451–468. DOI: 10.1007/s11144-011-0405-1.10.1007/s11144-011-0405-1Search in Google Scholar

23. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules 19, 19907–19992. DOI: 10.3390/molecules191219907.10.3390/molecules191219907Search in Google Scholar

24. Moraczenko, Z. & Balcerzak, M. (2000). Separation, Preconcentration and Spectrophotometry in Inorganic Analysis. Elsevier 439–440.Search in Google Scholar

25. Davies, L.J., McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2001). Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts. J. Mol. Catal. A: Chemical 165, 243–247. DOI: 10.1016/S1381-1169(00)00430-1.10.1016/S1381-1169(00)00430-1Search in Google Scholar

26. Davies, L.J., McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2000). By-product formation causes leaching of Ti from the redox molecular sieve TS-1. Chem. Commun. 807–1808. DOI: 10.1039/b002055i.10.1039/b002055iSearch in Google Scholar

27. Davies, L.J. McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2001). Effect of preparation method on leaching Ti from the redox molecular sieve TS-1. Phys. Chem. Chem. Phys. 3, 632–639. DOI: 10.1039/b007651l.10.1039/b007651lSearch in Google Scholar

28. Davies, L.J., McMorn, P., Bethell, D., Bulman Page, P.C., King, F., Hancock, F.E. & Hutchings, G.J. (2001). Epoxidation of crotyl alcohol using Ti-containing heterogeneous catalysts: comments on the loss of Ti by leaching. J. Catal. 198, 319–327. DOI: 10.1006/jcat.2000.3139.10.1006/jcat.2000.3139Search in Google Scholar

29. Ziółek, M. (2004). Catalytic liquid-phase oxidation in heterogeneous system as green chemistry goal-advantages and disadvantages of MCM-41 used as catalyst. Catal. Today 90, 145–150. DOI: 10.1016/j.cattod.2004.04.020.10.1016/j.cattod.2004.04.020Search in Google Scholar

30. Wróblewska, A. & Makuch, E. (2013). Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Pol. J. Chem. Technol. 4(15), 111–115. DOI: 10.2478/pjct-2013-0078.10.2478/pjct-2013-0078Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering