Open Access

Influence of expanded graphite coming from the electrochemical oxidation of phenol on cement-polymer matrix


Cite

1. Iotov, P.I. & Kalcheva, S.V. (1998). Mechanistic approach to the oxidation of phenol at a platinum/gold electrode in an acid medium. J. Electroanal. Chem. 442, 19–26. DOI: 10.1016/S0022-0728(97)00455-5.10.1016/S0022-0728(97)00455-5Search in Google Scholar

2. Martínez-Huitle, C.A. & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340. DOI: 10.1039/B517632H.10.1039/B517632HSearch in Google Scholar

3. Skowroński, J.M. & Krawczyk, P. (2004). Electrooxidation of phenol at exfoliated graphite electrode in alkaline solution. J. Solid State Electrochem. 8, 442–447. DOI: 10.1007/s10008-003-0483-8.10.1007/s10008-003-0483-8Search in Google Scholar

4. Krawczyk, P. & Skowroński, J.M. (2010). Modification of expanded graphite resulting inenhancement of electrochemical activity in the process of phenol oxidation. J. Appl. Electrochem. 40, 91–98. DOI: 10.1007/s10800-009-9984-1.10.1007/s10800-009-9984-1Search in Google Scholar

5. Boudenne, J.L., Cerclier, O., Galéa, J. & Bianco, P. (1998). Voltammetric studies of the behavior of carbon black during phenol oxidation on Ti/Pt electrodes. J. Electrochem. Soc. 145, 2763–2768. DOI: 10.1149/1.1838711.10.1149/1.1838711Search in Google Scholar

6. Feng, Y.J. & Li, X.Y. (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Wat. Res. 37, 2399–2407. DOI: 10.1016/S0043-1354(03)00026-5.10.1016/S0043-1354(03)00026-5Search in Google Scholar

7. Skowroński, J.M. & Krawczyk, P. (2009). Enhanced electrochemical activity of regenerated expanded graphite electrode after exhaustion in the process of phenol oxidation. Chem. Eng. J. 152, 464–470. DOI: 10.1016/j.cej.2009.05.009.10.1016/j.cej.2009.05.009Search in Google Scholar

8. Krawczyk, P. & Skowroński, J.M. (2012). Electrochemical reactivation of expanded graphite electrodes covered by oligomeric products of phenol electrooxidation. Electrochim. Acta 79, 202–209. DOI: 10.1016/j.electacta.2012.06.106.10.1016/j.electacta.2012.06.106Search in Google Scholar

9. Ohama, Y. (1997). Recent progress in concrete-polymer composites, Adv. Cem. Bas. Mat. 5, 31–40.10.1016/S1065-7355(96)00005-3Search in Google Scholar

10. Ohama, Y. (1998). Polymer-based admixtures, Cem. Concr. Res. 20, 189–212.Search in Google Scholar

11. Ślosarczyk, A. (2013). Cement composites modified with selected carbon materials, LAP LAMBERT Academic Publishing, Saarbrücken, Germany.Search in Google Scholar

12. Ślosarczyk, A. & Skowroński, J.M. (2009). Carbon spheres as possible micro-reinforcement of cement-based composites. Brittle Matrix Composites, Proceedings of the 9 International Symposium, Cambridge-Warsaw.Search in Google Scholar

13. Krawczyk, P., Ślosarczyk, A. (2009). Ekspandowany grafit po elektrochemicznym utlenianiu fenolu jako dodatek do zapraw cementowych. Przem. Chem. 6, 828–833, in polish.Search in Google Scholar

14. Ślosarczyk, A. & Krawczyk, P. (2015). Influence of expanded graphite Surface ozonation on the adhesion between carbon additive and cement matrix. Mater. Sci. MEDZG, 21, 298–302. DOI:10.5755/j01.mm.21.2.5860.Search in Google Scholar

15. Krawczyk, P. & Skowroński, J.M. (2010). Modification of Expanded Graphite Electrodes by Ozone Treatment. Acta Phys Pol A. 118, 465–470.10.12693/APhysPolA.118.465Search in Google Scholar

16. Tahar, N.B. & Savall, A. (2009) Electropolymerization of phenol on a vitreous carbon electrode in alkaline aqueous solution at different temperatures. Electrochim. Acta 55, 465–469. DOI: 10.1016/j.electacta.2009.08.040.10.1016/j.electacta.2009.08.040Search in Google Scholar

17. Gattrell, M. & Kirk, D.W. (1993). A study of electrode passivation during aqueous phenol electrolysis. J. Electrochem. Soc. 140, 903–911. DOI: 10.1149/1.2056225J.Search in Google Scholar

18. Sundaram, S. & Annamalai, S.K. (2012). Selective immobilization of hydroquinone on carbon nanotube modified electrode via phenol electro-oxidation method and its hydrazine electro-catalysis and Escherichia coli antibacterial activity. Electrochim. Acta 62, 207–217. DOI: 10.1016/j.electacta.2011.12.044.10.1016/j.electacta.2011.12.044Search in Google Scholar

19. Chung, D.D.L. (2004). Use of polymers for cement-based structural materials. J. Mat. Sci. 39, 2973–2978. DOI: 10.1023/B:JMSC.0000025822.72755.70.10.1023/B:JMSC.0000025822.72755.70Search in Google Scholar

20. Jenni, A., Holzer, L., Zurbriggen, R. & Herwegh, M. (2005). Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cem. Conc. Res. 35, 35–50. DOI: 10.1016/j.cemconres.2004.06.039.10.1016/j.cemconres.2004.06.039Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering