Cite

1. Ding, L., Zhou, Z., Guo, Q., Huo, W. & Yo, G. (2015). Catalytic effects of Na2CO3 additive on coal pyrolysis and gasifi cation. Fuel 142, 134-144. DOI: 10.1016/j.fuel.2014.11.010.10.1016/j.fuel.2014.11.010Search in Google Scholar

2. Li, W.W., Li, K.Z., Qu, X., Zhang, R. & Bi, J.C. (2014). Simulation of catalytic coal gasifi cation in a pressurized jetting fl uidized bed: Effects of operating conditions. Fuel Proc. Technol. 126, 504-512. DOI: 10.1016/j.fuproc.2014.06.006.10.1016/j.fuproc.2014.06.006Search in Google Scholar

3. Sharma, A., Takanohashi, T., Morishita, K., Takarada, T. & Saito, I. (2008). Low temperature catalytic steam gasifi cation of HyperCoal to produce H2 and synthesis gas. Fuel 87(4-5), 491-497. DOI: 10.1016/j.fuel.2007.04.015.10.1016/j.fuel.2007.04.015Search in Google Scholar

4. Namkung, H., Yuan, X., Lee, G., Kim, D., Kang, T.J. & Kim, H.T. (2014). Reaction characteristics through catalytic steam gasifi cation with ultra clean coal char and coal. J. Energy Inst. 87(3), 253-262. DOI: 10.1016/j.joei.2014.03.003.10.1016/j.joei.2014.03.003Search in Google Scholar

5. Tang, J. & Wang, J. (2016). Catalytic steam gasifi cation of coal char with alkali carbonates: A study on their synergic effects with calcium hydroxide. Fuel Proc. Technol. 142, 34-41. DOI: 10.1016/j.fuproc.2015.09.020.10.1016/j.fuproc.2015.09.020Search in Google Scholar

6. Qi, X., Guo, X., Xue, L. & Zheng, C. (2014). Effect of iron on Shenfu coal char structure and its infl uence on gasifi cation reactivity. J. Anal. Appl. Pyrol. 110, 401-407. DOI: 10.1016/j.jaap.2014.10.011.10.1016/j.jaap.2014.10.011Search in Google Scholar

7. Parthasarathy, P. & Narayanan, K.S. (2014). Hydrogen production from steam gasification of biomass: Infl uence of process parameters on hydrogen yield - A review. Renew Energ. 66, 570-579. DOI: 10.1016/j.renene.2013.12.025.10.1016/j.renene.2013.12.025Search in Google Scholar

8. McKee, D.W. (1979). Catalysis of the graphite-water vapor reaction by alkaline earth salts. Carbon 17(5), 419-425. DOI: 10.1016/0008-6223(79)90058-7.10.1016/0008-6223(79)90058-7Search in Google Scholar

9. Lang, R.J. (1989). Anion effects in alkali-catalysed steam gasification. Fuel 65(10), 1324-1329. DOI: 10.1016/0016-2361(86)90097-9.10.1016/0016-2361(86)90097-9Search in Google Scholar

10. Wang, J., Yao, Y., Cao, J. & Jiang, M. (2010). Enhanced catalysis of K2CO3 for steam gasifi cation of coal char by using Ca(OH)2 in char preparation. Fuel 89(2), 310-317. DOI: 10.1016/j.fuel.2009.09.001.10.1016/j.fuel.2009.09.001Search in Google Scholar

11. Otto, K. & Shelef, M. (1977). Catalytic steam gasifi cation of graphite: effects of intercalated and externally added Ru, Rh, Pd and Pt. Carbon 15(5), 317-325. DOI: 10.1016/0008-6223(77)90038-0.10.1016/0008-6223(77)90038-0Search in Google Scholar

12. Hung, X., Zhang, F., Fan, M. & Wang, Y. (2015). Chapter 7 - Catalytic Coal Gasifi cation. Sus. Catal. Proc. 179-199. DOI: 10.1016/B978-0-444-59567-6.00007-8.10.1016/B978-0-444-59567-6.00007-8Search in Google Scholar

13. Ratchahat, S., Kodama, S., Tanthapanichakoon, W. & Sekiguchi, H. (2015). CO2 gasifi cation of biomass wastes enhanced by Ni/Al2O3catalyst in molten eutectic carbonate salt. Int. J. Hydrogen Energ. 40(35), 11809-11822. DOI: 10.1016/j. ijhydene.2015.06.059.Search in Google Scholar

14. Lee, I.G., Nowacka, A., Yuan, C.H., Park, S.J. & Yang, J.B. (2015). Hydrogen production by supercritical water gasifi cation of valine over Ni/activated charcoal catalyst modifi ed with Y, Pt, and Pd. Int. J. Hydrogen Energ. 40(36), 12078-12087. DOI: 10.1016/j.ijhydene.2015.07.112.10.1016/j.ijhydene.2015.07.112Search in Google Scholar

15. Kopyscinski, J., Rahman, R., Gupta, R., Mims, C. & Hill, J. (2014). K2CO3 catalyzed CO2 gasifi cation of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere. Fuel 117(Part B), 1181-1189. DOI: 10.1016/j.fuel.2013.07.030.10.1016/j.fuel.2013.07.030Search in Google Scholar

16. Kim, Y.K., Park, J.I., Jung, D., Miyawaki, J., Yoon, S.H. & Mochida, I. (2014). Low-temperature catalytic conversion of lignite: 1. Steam gasifi cation using potassium carbonate supported on perovskite oxide. J. Ind. Eng. Chem. 20(1), 216-221. DOI: 10.1016/j.jiec.2013.04.004.10.1016/j.jiec.2013.04.004Search in Google Scholar

17. Waheed, Q., Wu, C. & Williams, P. (2015). Hydrogen production from high temperature steam catalytic gasifi cation of bio-char. J. Energy Inst. 89(2), 222-230. DOI: 10.1016/j. joei.2015.02.001.Search in Google Scholar

18. Supramono, D., Tristantini, D., Rahayu, A., Suwignjo, R. & Chendra, D. (2014). Syngas Production from Lignite Coal Using K2CO3 Catalytic Steam Gasifi cation with Controlled Heating Rate in Pyrolysis Step. Procedia Chem. 9, 202-209. DOI: 10.1016/j.proche.2014.05.024.10.1016/j.proche.2014.05.024Search in Google Scholar

19. Mazumber, J. & Lasa, H. (2014). Fluidizable Ni/La2O3- γAl2O3 catalyst for steam gasifi cation of a cellulosic biomass surrogate. Appl. Catal. B. 160-161, 67-79. DOI: 10.1016/j. apcatb.2014.04.042.Search in Google Scholar

20. Marchand, D.J., Schneider, E., Williams, B.P., Joo, Y.L., Kim, J., Kim, G.T. & Kim, S.H. (2015). Physical and chemical changes of coal during catalytic fl uidized bed gasifi cation. Fuel Proc. Technol. 130, 292-298. DOI: 10.1016/j.fuproc.2014.10.039.10.1016/j.fuproc.2014.10.039Search in Google Scholar

21. Lu, T., Li, K.Z., Zhang, R. & Bi, J.C. (2015). Addition of ash to prevent agglomeration during catalytic coal gasifi cation in a pressurized fl uidized bed. Fuel Proc. Technol. 134, 414-423. DOI: 10.1016/j.fuproc.2015.02.024.10.1016/j.fuproc.2015.02.024Search in Google Scholar

22. Spiro, C.L., McKee, D.W., Kosky, P.G. & Lamby, E.J. (1983). Catalytic CO2-gasifi cation of graphite versus coal char. Fuel 62(2), 180-184. DOI: 10.1016/0016-2361(83)90194-1.10.1016/0016-2361(83)90194-1Search in Google Scholar

23. Spiro, C.L., McKee, D.W., Kosky, P.G. & Lamby, E.J. (1984). Observation of alkali catalyst particles during gasifi cation of carbonaceous materials in CO2 and steam. Fuel 63(5), 686-691. DOI: 10.1016/0016-2361(84)90167-4.10.1016/0016-2361(84)90167-4Search in Google Scholar

24. Huhn, F., Klein, J. & Jüntgen, H. (1983). Investigations on the alkali catalysed steam gasifi cation of coal: kinetics and interactions of alkali catalyst with carbon. Fuel 62(2), 196-199. DOI: 10.1016/0016-2361(83)90197-7.10.1016/0016-2361(83)90197-7Search in Google Scholar

25. Liu, Z-l. & Zhu, H-h. (1986). Steam gasifi cation of coal char using alkali and alkaline-earth metal catalysts. Fuel 65(10), 1334-1338. DOI: 10.1016/0016-2361(86)90099-2.10.1016/0016-2361(86)90099-2Search in Google Scholar

26. Phuhiran, C, Takarada, T. & Chaiklangmuang, S. (2014). Hydrogen-rich gas from catalytic steam gasifi cation of eucalyptus using nickel-loaded Thai brown coal char catalyst. Int. J. Hydrogen Energ. 39(8), 2649-3656. DOI: 10.1016/j. ijhydene.2013.12.155.Search in Google Scholar

27. Wu, X., Tang, J. & Wang, J. (2016). A new active site/ intermediate kinetic model for K2CO3-catalyzed steam gasifi - cation of ash-free coal char. Fuel 165, 59-67. DOI: 10.1016/j. fuel.2015.10.034.Search in Google Scholar

28. Namkung, H., Yuan, X., Lee, G., Kim, D., Kang, T.J. & Kim, H.T. (2014). Reaction characteristics through catalytic steam gasifi cation with ultra clean coal char and coal. J Energy Inst. 87(3), 253-262. DOI: 10.1016/j.joei.2014.03.003.10.1016/j.joei.2014.03.003Search in Google Scholar

29. Porada, S, Czerski, G., Dziok, T., Grzywacz, P. & Makowska, D. (2015). Kinetics of steam gasifi cation of bituminous coals in terms of their use for underground coal gasifi cation. Fuel Proc. Technol. 130, 282-291. DOI: 10.1016/j.fuproc.2014.10.015.10.1016/j.fuproc.2014.10.015Search in Google Scholar

30. Porada, S. & Rozwadowski, A. (2014). Kinetic study of steam gasifi cation of bituminous coal at elevated pressures. Przem Chem. 93(3), 384-387. DOI: 10.12916/przemchem.2014.384.Search in Google Scholar

31. Saber, J.M., Falconer, J.L. & Brown, L.F. (1986). Interaction of potassium carbonate with surface oxides of carbon. Fuel 65, 1356-1359. DOI: 10.1016/0016-2361(86)90103-1.10.1016/0016-2361(86)90103-1Search in Google Scholar

32. Saber, J.M., Kester, K.B., Falconer, J.L. & Brown, L.F. (1988). A mechanism for sodium oxide catalyzed CO2 gasifi - cation of carbon. J Catal. 109, 329-346. DOI: 10.1016/0021-9517(88)90216-3.10.1016/0021-9517(88)90216-3Search in Google Scholar

33. Matsukata, M., Fujikawa, T., Kikuchi, E. & Morita, Y. (1988). Interaction between potassium carbonate and carbon substrate at subgasifi cation temperature. Migration of potassium into the carbon matrix. Energ Fuel 2, 750-756. DOI: 10.1021/ef00012a006.10.1021/ef00012a006Search in Google Scholar

34. Wood, B.J. & Sancier, K.M. (1984). The mechanism of catalytic gasifi cation of coal char: a critical review. Catal Rev. 26, 233-79. DOI: 10.1080/01614948408078065.10.1080/01614948408078065Search in Google Scholar

35. Wang, J., Jiang, M., Yao, Y., Zhang, Y. & Cao, J. (2009). Steam gasifi cation of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel. 88, 1572-1579. DOI: 10.1016/j.fuel.2008.12.017.10.1016/j.fuel.2008.12.017Search in Google Scholar

36. Mckee, D.W. (1983). Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 62, 170-175. DOI: 10.1016/0016-2361(83)90192-8.10.1016/0016-2361(83)90192-8Search in Google Scholar

37. Chen, S.G. & Yang, R.T. (1997). Unifi ed mechanism of alkali and alkaline earth catalyzed gasifi cation reactions of carbon by CO2 and H2O. Energ Fuel 11, 421-427. DOI: 10.1021/ef960099o.10.1021/ef960099oSearch in Google Scholar

38. Wang, J., Sakanishi, K. & Saito, I. (2005). High-Yield Hydrogen Production by Steam Gasifi cation of HyperCoal (Ash- Free Coal Extract) with Potassium Carbonate: Comparison with Raw Coal. Energ Fuel 19, 2114-2120. DOI: 10.1021/ef040089k 10.1021/ef040089kSearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering