Open Access

Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies


Cite

1. Khomotimchenko, M., Kovalev, V., Kouvelos, E.P. & Khomotimchenko, Y. (2008). Comparative equilibrium studies of sorption of Pb(II) ions by sodium and calcium alginate. J. Environ. Sci. (China) 20, 827-829. DOI: 10.1016/S1001-0742(08)62133-6.10.1016/S1001-0742(08)62133-6Search in Google Scholar

2. Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P. & Kanellopoulos, N.K. (2009). Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J. Hazard. Mater. 162, 1347. DOI: 10.1016/j.jhazmat.2008.06.022.10.1016/j.jhazmat.2008.06.02218653278Search in Google Scholar

3. Mata, Y.N., Blázquez, M.L., Ballester, A., González, F. & Mu˜noz, J.A. (2009). Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J. Hazard. Mater. 163, 555. DOI: 10.1016/j.jhazmat.2008.07.01510.1016/j.jhazmat.2008.07.01518760533Search in Google Scholar

4. Stewart, T., Yau, J., Allen, M., Brabander, D. & Flynn, N. (2009). Impact of calcium-alginate density on equilibrium and kinetic of lead(II) sorption onto hydrogel beads. Colloid. Polym. Sci. 287, 1033, 1035- 1036. DOI: 10.1007/s00396-009-2058-4.10.1007/s00396-009-2058-4Search in Google Scholar

5. Oszczak, A. & Fuks, L. (2011). Sorpcja na alginianie wapnia wybranych radionuklidów występujących w odpadach promieniotwórczych. VI Krakowska Konferencja Młodych Uczonych 29.09-1.10 2011 (pp. 115-116). Kraków, Poland.Search in Google Scholar

6. Ashraf, M.A., Mahmood, K. & Wajid, A. (2011). Study of low cost for biosorbent of heavy metal. International Conference on Food Engineering and Biotechnology IPCBEE Vol. 9, IACSIT Press 28-30 September 2011(pp. 60-61), Singapore.Search in Google Scholar

7. Sankalia, M.G., Mashru, R.C. & Sutariya, V.B.(2005). Papain Entrapment in Alginate Beads for Stability Improvement and Site-Specifi c Delivery: Physicochemical Characterization and Factorial Optimization Using Neural Network Modeling. AAPS Pharm. Sci. Tech. 6(2), 218-219. DOI: 10.1208/pt060231.10.1208/pt060231275053416353980Search in Google Scholar

8. Tores, E., Mata, Y.N., Blázquez, J.A., Mu˜noz, J.A., González, F. & Ballester, A. (2005). Gold and Silver uptake and nanoprecipitation on calcium alginate beads. Langmuir 21, 7955-7966. DOI: 10.1021/la046852k.10.1021/la046852k16089404Search in Google Scholar

9. Song, D., Park, S.J., Kang, H.W., Park, S.B. & Han, J.I. (2013). Recovery Lithium(I), Strontium(II) and Lanthanum(III) using calcium alginate beads. J. Chem. Eng. Data 58, 2456-2457. DOI: 10.1021/je400317v.10.1021/je400317vSearch in Google Scholar

10. Xiangliang, P., Jianlong, W. & Daoyong, Z. (2005). Biosorption of Pb(II) by Pleurotus ostreatus imbolized in calcium alginate gel. Process Biochem. 40, 2802. DOI: 10.1016/j. procbio.2004.12.007.Search in Google Scholar

11. Daemi, H. & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci. Iranica 19, 2024-2025. DOI: 10.1016/j.scient.2012.10.005.10.1016/j.scient.2012.10.005Search in Google Scholar

12. Romera, E., Fraquela, P., Ballester, A., Blázquez, J.A., Mu˜noz, J.A. & González, F. (2003). Biosorption equilibria with Spirogyra insignis, 15th International Biohydometallurgy Symposium. 19-19 September 2003, (pp.784). Athens, Hellas, Greece.Search in Google Scholar

13. Bayramoğlu, G. & Arica, M.Y. (2009). Construction a hybrid biosorbent using Scenedesmus and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): Kinetics and equilibrium studies. Bioresour. Technol. 100, 189. DOI: 10.1016/j. biortech.2008.05.050.Search in Google Scholar

14. Abu Al-Rub, F., El-Naas, M., Benyahia, F. & Ashour, I. (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Proc. Biochem. 39, 1770. DOI: 10.1016/j.procbio.2003.08.002.10.1016/j.procbio.2003.08.002Search in Google Scholar

15. Nadeem, U. & Datta, M. (2014). Adsorption studies on zinc(II) ions on biopolymer composite beads of alginate-fl y ash. Eur. Chem. Bull. 3(7), 686-697. DOI: 10.1002/pc.22747.10.1002/pc.22747Search in Google Scholar

16. Lagoa, R. & Rodrigues, J. (2009). Kinetic analysis of metal uptake by dry and gel alginate particles. Biochem. Eng. J. 46, 324. DOI: 10.1016/j.bej.2009.06.007.10.1016/j.bej.2009.06.007Search in Google Scholar

17. Hamdaouia, O. & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 147, 387. DOI: 10.1016/j.jhazmat.2007.01.021.10.1016/j.jhazmat.2007.01.02117276594Search in Google Scholar

18. Kumar, P.S., Ethiraj, H., Venkat, A., Deepika, N., Nivedha, S., Vidhyadevi, T., Ravikumar, L. & Sivanesan, S. (2015). Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendentchlorobenzylidine ring. Pol. J. Chem. Technol. 17(3), 104-105. DOI: 10.1515/pjct-2015-0057.10.1515/pjct-2015-0057Search in Google Scholar

19. Marques, T.L., Alves, V.N., Coelho, L.M. & Coelho, N.M. (2013). Assessment of the Use of Moringa oleifera Seeds for Removal of Manganese Ions from Aqueous Systems. Bioresources 8(2), 2743-2745. DOI: 10.1016/j.jhazmat.2009.08.011.10.1016/j.jhazmat.2009.08.01119720456Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering