Open Access

Removal of Cr(III) ions from salt solution by nanofiltration: experimental and modelling analysis


Cite

1. Su, B., Wu, T., Li, Z., Cong, X., Gao, X. & Gao, C. (2015). Pilot study of seawater nanofiltration softening technology based on integrated membrane system. Desalination 368, 193-201. DOI: 10.1016/j.desal.2015.03.012.10.1016/j.desal.2015.03.012Search in Google Scholar

2. Orecki, A., Tomaszewska, M., Karakulski, K. & Morawski, A.W. (2004). Surface water treatment by the nanofiltration method. Desalination 162, 47-54. DOI: 10.1016/S0011-9164(04)00026-8.10.1016/S0011-9164(04)00026-8Search in Google Scholar

3. Liu, C., Shi, L. & Wang, R. (2015). Crosslinked layer-bylayer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO4 2− in feed water. J. Membr. Sci. 486, 169-176. DOI: 10.1016/j. memsci.2015.03.050.Search in Google Scholar

4. Bellona, C. & Drewes, J.E. (2007). Viability of a lowpressure nanofilter in treating recycled water for water reuse applications: A pilot-scale study. Water Res. 41, 3948-3958. DOI: 10.1016/j.watres.2007.05.027.10.1016/j.watres.2007.05.02717582458Search in Google Scholar

5. Antczak, J., Regiec, J. & Prochaska, K. (2014). Separation and concentration of succinic acid from multicomponent aqueous solutions by nanofiltration technique. Pol. J. Chem. Tech. 16, 1-4. DOI: 10.2478/pjct-2014-0021.10.2478/pjct-2014-0021Search in Google Scholar

6. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak, M. (2014). The study of glycerolbased fermentation and broth downstream by nanofiltration. Pol. J. Chem. Tech. 16, 117-122. DOI: 10.2478/pjct-2014-0081.10.2478/pjct-2014-0081Search in Google Scholar

7. Ortega, L.M., Lebrun, R., Noël, I.M. & Hausler, R. (2005). Application of nanofiltration in the recovery of chromium(III) from tannery effluents. Sep. Purif. Technol. 44, 45-52. DOI: 10.1016/j.seppur.2004.12.002.10.1016/j.seppur.2004.12.002Search in Google Scholar

8. Das, C., Patel, P., De, S. & DasGupta, S. (2006). Treatment of tanning effluent using nanofiltration followed by reverse osmosis. Sep. Purif. Technol. 50, 291-299. DOI: 10.1016/j.seppur.2005.11.034.10.1016/j.seppur.2005.11.034Search in Google Scholar

9. Gomes, S., Cavaco, S.A., Quina, M.J. & Gando-Ferreira, L.M. (2010). Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis. Desalination 254, 80-89. DOI: 10.1016/j.desal.2009.12.010.10.1016/j.desal.2009.12.010Search in Google Scholar

10. Nędzarek, A., Drost, A., Tórz, A., Harasimiuk, F. & Kwaśniewski, D. (2015). The impact of pH and sodium chloride concentration on the efficiency of the process of separating high-molecular compounds. J. Food Proc. Engine. 38, 115-124. DOI: 10.1111/jfpe.12131.10.1111/jfpe.12131Search in Google Scholar

11. Drost, A., Nędzarek, A., Bogusławska-Wąs, E., Tórz, A. & Bonisławska, M. (2014). UF application for innovative reuse of fish brine: product quality, CCP management and the HACCP system. J. Food Proc. Engine. 37, 396-401. DOI: 10.1111/jfpe.12095.10.1111/jfpe.12095Search in Google Scholar

12. Religa, P., Kowalik-Klimczak, A. & Gierycz, P. (2013). Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution. Desalination 315, 115-123. DOI: 10.1016/j.desal.2012.10.036.10.1016/j.desal.2012.10.036Search in Google Scholar

13. Religa, P., Kowalik, A. & Gierycz, P. (2011). Effect of membrane properties on chromium(III) recirculation from concentrate salt mixture solution by nanofiltration. Desalination 274, 164-170. DOI: 10.1016/j.desal.2011.02.006.10.1016/j.desal.2011.02.006Search in Google Scholar

14. Religa, P., Kowalik, A., & Gierycz, P. (2011). A new approach to chromium concentration from salt mixture solution using nanofiltration. Sep. Purif. Technol. 82, 114-120. DOI: 10.1016/j.seppur.2011.08.032.10.1016/j.seppur.2011.08.032Search in Google Scholar

15. Tanninen, J., Mänttäri, M. & Nyström, M. (2006). Effect of salt mixture concentration on fractionation with NF membranes. J. Membr. Sci. 283, 57-64. DOI: 10.1016/j.memsci.2006.06.012.10.1016/j.memsci.2006.06.012Search in Google Scholar

16. Sharna, R.R. & Chellam, S. (2008). Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries. J. Coll. Inter. Sci. 328, 353-366. DOI: 10.1016/j.jcis.2008.09.036.10.1016/j.jcis.2008.09.03618930248Search in Google Scholar

17. Deon, S., Escoda, A. & Fievet, P. (2011). A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chem. Eng. Sci. 66, 2823-2832. DOI: 10.1016/j.ces.2011.03.043.10.1016/j.ces.2011.03.043Search in Google Scholar

18. Deon, S., Dutournie, P., Limousy, L. & Bourseau, P. (2009). Transport of salt mixture through nanofiltration membranes: Numerical identifi cation of electric and dielectric contributions. Sep. Purif. Technol. 69, 225-233. DOI: 10.1016/j.seppur.2009.07.022.10.1016/j.seppur.2009.07.022Search in Google Scholar

19. Chaudhari, L.B. & Murthy, Z.V.P. (2010).Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. J. Hazard. Mater. 180, 309-315. DOI: 10.1016/j.jhazmat.2010.04.032.10.1016/j.jhazmat.2010.04.03220452729Search in Google Scholar

20. Kelewou, H., Lhassani, A., Merzouki, M., Drogui, P. & Sellamuthu, B. (2011). Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modelling. Desalination 277, 106-112. DOI: 10.1016/j.desal.2011.04.010.10.1016/j.desal.2011.04.010Search in Google Scholar

21. Jarzyńska, M. & Pietruszka, M. (2011). The application of the Kedem-Katchalsky equations to membrane transport of ethyl alcohol and glucose. Desalination 280, 14-19. DOI: 10.1016/j.desal.2011.07.034.10.1016/j.desal.2011.07.034Search in Google Scholar

22. Schaep, J., Vandecasteele, C., Mohammad, A.W. & Bowen, W.R. (2001). Modelling the retention of ionic components for different nanofiltration membranes. Sep. Purif. Technol. 22-23, 169-179. DOI: 10.1016/S1383-5866(00)00163-5.10.1016/S1383-5866(00)00163-5Search in Google Scholar

23. Mohammad, A.W. & Takriff, M.S. (2003). Predicting flux and rejection of multicomponents salts mixture in nanofiltration membranes. Desalination 157, 105-111. DOI: 10.1016/ S0011-9164(03)00389-8.10.1016/S0011-9164(03)00389-8Search in Google Scholar

24. Hagmeyer, G. & Gimbel, R. (1998). Modelling the salt rejection of nanofiltration membranes for ternary ion mixture and for single salts at different pH value. Desalination 117, 247-256. DOI: 10.1016/S0011-9164(98)00109-X.10.1016/S0011-9164(98)00109-XSearch in Google Scholar

25. Murthy, Z.V.P. & Chaudhari, L.B. (2008). Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedemmodel. Chem. E ng. J. 150, 81-187. DOI: 10.1016/j.cej.2008.12.023.10.1016/j.cej.2008.12.023Search in Google Scholar

26. Nędzarek, A., Drost, A., Harasimiuk, F.B. & Tórz, A. (2015). The influence of pH and BSA on the retention of selected heavy metals in the nanofiltration process using ceramic membrane. Desalination 369, 62-67. DOI: 10.1016/j. desal.2015.04.019.Search in Google Scholar

27. Norm PN-77/C-04604 (in Polish).Search in Google Scholar

28. Norm PN-ISO 9297:1994 (in Polish).Search in Google Scholar

29. Bes-Piá, A., Cuartas-Uribe, B., Mendoza-Roca, J.A. & Alcaina-Miranda, M.I. (2010). Study of the behaviour of different NF membranes for the reclamation of a secondary textile effluent in rinsing processes. J. Hazard. Mater. 178, 341-348. DOI: 10.1016/j.jhazmat.2010.01.085.10.1016/j.jhazmat.2010.01.08520149527Search in Google Scholar

30. Atkins, P.W. (2012). Physical Chemistry. WNSearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering