Open Access

Thermal and kinetic analysis of pure and contaminated ionic liquid: 1-butyl-2.3-dimethylimidazolium chloride (BDMIMCl)

   | Jun 30, 2016

Cite

1. Endres, F., MacFarlane, D. & Abbott, A. (2008). Electrodeposition from Ionic Liquids. (1st ed.). Germany: Wiley-VCH.10.1002/9783527622917Search in Google Scholar

2. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K. & Brennecke, J.F. (2004). Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data, 49, 954–964. DOI: 10.1021/je034261a.10.1021/je034261aSearch in Google Scholar

3. Hao, Y., Peng, J., Hu, S., Zhai, J. & Li, M. (2010). Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA-MS analysis and DFT calculations. Therm. Acta, 501, 78–83. DOI: 10.1016/j.tca.2010.01.013.10.1016/j.tca.2010.01.013Search in Google Scholar

4. Seddon, K.R., Stark, A. & María-José, T. (2000). Influence of chloride, water and organic solvents on the physical properties of ionic liquids. Pure & Appl. Chem. 72, 2275–2287. DOI: 10.1351/pac200072122275.10.1351/pac200072122275Search in Google Scholar

5. Hagiwara, R. & Ito, Y. (2000). Room temperature ionic liquids of alkyl imidazolium cations and fluoro anions. J. Fluorine Chem. 105, 221–227. DOI: 10.1016/S0022-1139(99)00267-5.10.1016/S0022-1139(99)00267-5Search in Google Scholar

6. Stevanovic, S. & Gomes, M.F.C. (2013). Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids. J. Chem. Therm. 59, 65–71. DOI: 10.1016/j.jct.2012.11.010.10.1016/j.jct.2012.11.010Search in Google Scholar

7. Ngo, H.L., LeCompte, K., Hargens, L. & McEwen, A. B. (2000). Thermal properties of imidazolium ionic liquids. Therm. Acta. No. 357–358, 97–102. DOI: 10.1016/S0040-6031(00)00373-7.10.1016/S0040-6031(00)00373-7Search in Google Scholar

8. Joglekar, H.G., Rahman, I. & Kulkarni, B.D. (2007). The Path Ahead for Ionic Liquids. Chem. Eng. Technol., 30, 819–828. DOI: 10.1002/ceat.200600287.10.1002/ceat.200600287Search in Google Scholar

9. Muhammad, A., Abdul Mutalib, M.I., Wilfred, C.D., Murugesan, T. & Shafeeq, A. (2008). Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl) imide anions. J. Chem. Therm. 40, 1433–1438. DOI: 10.1016/j.jct.2008.04.016.10.1016/j.jct.2008.04.016Search in Google Scholar

10. Kamavaram, V. & Reddy, R.G. (2008). Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int. J. Therm. Sci. 47, 773–777. DOI: 10.1016/j.ijthermalsci.2007.06.012.10.1016/j.ijthermalsci.2007.06.012Search in Google Scholar

11. Kosmulski, M., Gustafsson, J. & Rosenholm, J.B. (2004). Thermal stability of low temperature ionic liquids revisited. Therm. Acta. 412, 47–53. DOI: 10.1016/j.tca.2003.08.022.10.1016/j.tca.2003.08.022Search in Google Scholar

12. Fox, D.M., Gilman, J.W., De Long, H.C. & Trulove, P.C. (2005). TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazoliumtetrafluoroborate and the thermal effects of contaminants. J. Chem. Therm. 37, 900–905. DOI: 10.1016/j.jct.2005.04.020.10.1016/j.jct.2005.04.020Search in Google Scholar

13. Lazzús, J.A. (2012). A group contribution method to predict the thermal decomposition temperature of ionic liquids. J. Mol. Liquids 168, 87–93. DOI: 10.1016/j.molliq.2012.01.011.10.1016/j.molliq.2012.01.011Search in Google Scholar

14. Janković, B., Mentus, S. & Janković, M. (2008). A kinetic study of the thermal decomposition process of potassium meta bisulfite: Estimation of distributed reactivity model. J. Phys. Chem. Solids 69, 1923–1933. DOI: 10.1016/j.jpcs.2008.01.013.10.1016/j.jpcs.2008.01.013Search in Google Scholar

15. Lu, C., Song, W. & Lin, W. (2009). Kinetics of biomass catalytic pyrolysis. Biotechn. Adv. 27, 583–587. DOI: 10.1016/j.biotechadv.2009.04.014.10.1016/j.biotechadv.2009.04.01419393731Search in Google Scholar

16. Zhang, Z. & Reddy, R.G. (2002). Thermal stability of ionic liquids, TMS annual meeting.Search in Google Scholar

17. Tonbul, Y. & Yurdakoc, K. (2001). Thermogravimetric Investigation of the Dehydration Kinetics of KSF, K10 and Turkish Bentonite. Turk J. Chem. 25, 333–339. DOI: 10.1080/22243682.2013.871210.10.1080/22243682.2013.871210Search in Google Scholar

18. Kroon, M.C., Buijs, W., Peters, C.J. & Geert-Jan, W. (2007). Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Therm. Acta 465, 40–47. DOI: 10.1016/j.tca.2007.09.003.10.1016/j.tca.2007.09.003Search in Google Scholar

19. Manikandan, G., Rajarajan, G., Jayabharathi, J. & Thanikachalam, V. (2011). Structural effects and thermal decomposition kinetics of chalcones under non-isothermal conditions. A. J. Chem., In Press. DOI: 10.1016/j.arabjc.2011.06.029.10.1016/j.arabjc.2011.06.029Search in Google Scholar

20. Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysi. Polym. Deg. Stabil. 93, 90–98. DOI: 10.1016/j.polymdegradstab.2007.10.012.10.1016/j.polymdegradstab.2007.10.012Search in Google Scholar

21. Omrani, A. & Hasankola, S.M.M. (2012). Kinetic study on solid state thermal degradation of epoxy nanocomposite containing Octasilane polyhedral oligomeric silsesquioxane. J. Non-Crystalline Sol. 358, 1656–1666. DOI: 10.1016/j.jnoncrysol.2012.04.036.10.1016/j.jnoncrysol.2012.04.036Search in Google Scholar

22. Meng, X., Huang, Y., Yu, H. & Lv, Z. (2007). Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym. Deg. Stabil. 92, 962–967. DOI: 10.1016/j.polymdegradstab.2007.03.005.10.1016/j.polymdegradstab.2007.03.005Search in Google Scholar

23. Vasconcelos, G. da C., Mazur, R.L., Ribeiro, B., Botelho, E.C. & Costa, M.L. (2014). Evaluation of Decomposition Kinetics of Poly (Ether-Ether-Ketone) by Thermogravimetric Analysis. Mater. Res. 17(1), 227–235. DOI: 10.1590/S1516-14392013005000202.10.1590/S1516-14392013005000202Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering