Cite

1. Wojtoniszak, M., Chen, X., Kalenczuk, R.J., Wajda, A., Łapczuk, J., Kurzewski, M., Drozdzik, M., Chu, P.K. & Borowiak-Palen, E. (2012). Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces 89, 79–85. DOI: 10.1016/j.colsurfb.2011.08.026.10.1016/j.colsurfb.2011.08.02621962852Search in Google Scholar

2. Huang, L., Huang, Y., Liang, J., Wan, X. & Chen, Y. (2011). Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors. Nano Res. 4(7), 675–684. DOI: 10.1007/s12274-011-0123-z.10.1007/s12274-011-0123-zSearch in Google Scholar

3. Jangho, K., Kyoung, S.C., Yeonju, K., Ki-Tack, L., Hoon, S., Yensil, P., Deok-Ho, K., Pill-Hoon, C., Chong-Su, C., Soo, Y.K., Yun-Hoon, C. & Jong, H.C. (2013). Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J. Biomed. Mater. Res. Part A. 101(12), 3520–3530. DOI: 10.1002/jbm.a.34659.10.1002/jbm.a.3465923613168Search in Google Scholar

4. Carrow, J.K. & Gaharwar, A.K. (2015). Bioinspired Polymeric Nanocomposites for Regenerative Medicine. Macromol. Chem. Phys. 216(3), 248−264. DOI: 10.1002/macp.201400427.10.1002/macp.201400427Search in Google Scholar

5. Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X. & Chen, Y. (2009). A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 21(12), 1275–1279. DOI: 10.1002/adma.200801617.10.1002/adma.200801617Search in Google Scholar

6. Huang, S.J., et al. (2013). Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplant 22(4), 701–9. DOI: 10.3727/096368912X655127.10.3727/096368912X65512723068312Search in Google Scholar

7. Yi, T. & Song, S.U. (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharm. Res. 35(2), 213–221. DOI: 10.1007/s12272-012-0202-z.10.1007/s12272-012-0202-z22370776Search in Google Scholar

8. Kapur, S.K. & Katz, A.J. (2013). Review of the adipose derived stem cell secretome. Biochimie 95(12), 2222–2228. DOI: 10.1016/j.biochi.2013.06.001.10.1016/j.biochi.2013.06.00123770442Search in Google Scholar

9. Zhanga, Y., Nayakb, T.R., Hongb, H. & Caia, W. (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4, 3833–3842. DOI: 10.1039/C2NR31040F.10.1039/c2nr31040f337619122653227Search in Google Scholar

10. Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M. & Cheng, G. (2013). Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3, 1604, DOI: 10.1038/srep01604.10.1038/srep01604361538623549373Search in Google Scholar

11. Sanchez, V.C., Jachak, A., Hurt, R.H. & Kane, A.B. (2012). Biological Interactions of Graphene-Family Nanomaterials – An Interdisciplinary Review. Chem. Res. Toxicol 25(1), 15–34. DOI: 10.1021/tx200339h.10.1021/tx200339h325922621954945Search in Google Scholar

12. Akhavan, O., Ghaderi, E. & Akhavan, A. (2012). Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32). DOI: 10.1016/j.biomaterials.2012.07.040.10.1016/j.biomaterials.2012.07.04022863381Search in Google Scholar

13. Kim, T.H., Shah, S., Yang, L., Yin, P.T., Hossain, M.K., Conley, B., Choi, J.W. & Lee, K.B. (2015) Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays. ACS Nano 9(4), 3780–3790. DOI: 10.1021/nn5066028.10.1021/nn5066028580888925840606Search in Google Scholar

14. Woo, K., Jang, D. Kim, Y. & Moonn, J. (2013). Relationship between printability and rheological behavior of inkjet conductive inks. Ceramics Inter. 39(6), 7015–7021. DOI: 10.1016/j.ceramint.2013.02.039.10.1016/j.ceramint.2013.02.039Search in Google Scholar

15. Xu, Y. Hennig, I., Freyberg, D., Strudwick, A.J., Schwab, M.G., Weitz, T. & Cha, K.C. (2014). Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sour. 248, 483–488. DOI: 10.1016/j.jpowsour.2013.09.096.10.1016/j.jpowsour.2013.09.096Search in Google Scholar

16. Ferris, C. (2013). Bio-inks for drop-on-demand cell printing, University of Wollongong, from research online on the World Wide Web: http://ro.uow.edu.au/theses/3875/Search in Google Scholar

17. Gamota, D., Brazis, P., Kalyanasundaram, K. & Zhang, J. (2004). Printed Organic and Molecular Electronics. Springer Science+Business Media, LLC, from SpringerLink.10.1007/978-1-4419-9074-7Search in Google Scholar

18. Kamyshny, A., Steinke, J. & Magdassi S. (2011). Metalbased Inkjet Inks for Printed Electronics, The Open Appl. Phys. J. 4, 19–36. DOI: 1874-1835/11.Search in Google Scholar

19. Nelo, M., Sowpati, A.K., Palukuru, V.K., Juuti, J. & Jantunen, H. (2010). Formulation of Screen Printable Cobalt Nanoparticle Ink for High Frequency Applications. Prog. Electromag. Res. 110. DOI: 10.2528/PIER10102101.10.2528/PIER10102101Search in Google Scholar

20. Li, J., Ye, F., Vaziri, S., Muhammed, M., Lemme, M.C. & Östling, M. (2013). Efficient Inkjet Printing of Graphene. Adv. Mater. 25(29), 3985–3992. DOI: 0.1002/adma.201300361.10.1002/adma.20130036123728928Search in Google Scholar

21. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T.S., Hsieh, G.W., Jung, S., Bonaccorso, F., Paul, P.J., Chu, D. & Ferrari, A.C. (2012). Inkjet printed graphene electronics. ACS Nano 6(4), 2992–3006, DOI: 10.1021/nn2044609.10.1021/nn204460922449258Search in Google Scholar

22. Ferris, C. (2013), Bio-inks for drop-on-demand cell printing, University of Wollongong.Search in Google Scholar

23. Zuk, P.A., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2), 211–228. DOI: 10.1089/107632701300062859.10.1089/10763270130006285911304456Search in Google Scholar

24 Sheng-Zhen, Z. & Bao-Hang, H. (2009). Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel J. Phys. Chem. C. 113(31), 13651–13657. DOI: 10.1021/jp9035887.10.1021/jp9035887Search in Google Scholar

25. Biondi, O., Motta, S. & Mosesso, P. (2002). Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro. Mutagenesis 17(3), 261–264. DOI: 10.1093/mutage/17.3.261.10.1093/mutage/17.3.26111971999Search in Google Scholar

26. Kyoohee, W., Daehwan, J., Youngwoo, K. & Jooho, M. Relationship between printability and rheological behavior of ink-jet conductive inks. Ceramics Inter. (2013), Vol. 39, 7015–7021. DOI: 10.1016/j.ceramint.2013.02.039.10.1016/j.ceramint.2013.02.039Search in Google Scholar

27. Ihalainen, P., Määttänen, A. & Sandler, N. (2015). Printing technologies for biomolecule and cell-based applications. Inter. J. Pharmac. DOI: 10.1016/j.ijpharm.2015.02.033.10.1016/j.ijpharm.2015.02.03325683144Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering