Open Access

Kinetic study of CO2 reaction with CaO by a modified random pore model


Cite

1. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van Der Linden, P.J., Dai, X., Maskell, K. & Johnson, C., Climate change 2001: the scientific basis, Cambridge University Press, UK, 2001.Search in Google Scholar

2. Dean, C., Blamey, J., Florin, N., Al-Jeboori & M., Fennell, P. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chem. Eng. Res. Des. 89, 836–855. DOI: 10.1016/j.cherd.2010.10.013.10.1016/j.cherd.2010.10.013Search in Google Scholar

3. Abanades, J.C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E.J. & Romeo, L.M. (2007). Cost structure of a postcombustion CO2 capture system using CaO. Environ. Sci. Technol. 41, 5523–5527. DOI: 10.1021/es070099a.10.1021/es070099aSearch in Google Scholar

4. Abanades, J.C., Anthony, E.J., Wang, J. & Oakey, J.E. (2005). Fluidized bed combustion systems integrating CO2 capture with CaO. Environ. Sci. Technol. 39, 2861–2866. DOI: 10.1021/es0496221.10.1021/es0496221Search in Google Scholar

5. Fang, F., Li, Z.S. & Cai, N.S. (2009). Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent. Ind. Eng. Chem. Res. 48, 11140–11147. DOI: 10.1021/ie901128r.10.1021/ie901128rSearch in Google Scholar

6. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. Des. 77, 62–68. DOI: 10.1205/026387699525882.10.1205/026387699525882Search in Google Scholar

7. Bhatia, S.K. & Perlmutter, D.D. (1983). Effect of the product layer on the kinetics of the CO2-lime reaction, AIChE J. 29, 79–86. DOI: 10.1002/aic.690290111.10.1002/aic.690290111Search in Google Scholar

8. Khoshandam, B., Kumar, R.V. & Allahgholi, L. (2010) Mathematical modeling of CO2 removal using carbonation with CaO: The grain model. Kor. J. Chem. Eng. 27, 766–776. DOI: 10.1007/s11814-010-0119-5.10.1007/s11814-010-0119-5Search in Google Scholar

9. Sun, P., Grace, J.R., Lim, C.J., Anthony, E.J. (2008). Determination of intrinsic rate constants of the CaO–CO2 reaction. Chem. Eng. Sci. 63, 47–56. DOI: 10.1016/j.ces.2007.08.055.10.1016/j.ces.2007.08.055Search in Google Scholar

10. Sun, P., Grace, J.R., Lim, C.J. & Anthony, E.J. (2008). A discrete-pore-size-distribution-based gas–solid model and its application to the CaO-CO2 reaction. Chem. Eng. Sci. 63, 57–70. DOI: 10.1016/j.ces.2007.08.055.10.1016/j.ces.2007.08.055Search in Google Scholar

11. Nitsch, W. (1962). Über die Druckabhängigkeit der CaCO3-Bildung aus dem Oxyd. Z. Elektrochem 66, 703–708. OI: 10.1002/bbpc.19620660821.Search in Google Scholar

12. Dennis, J.S. & Hayhurst, A.N. (1987). The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem. Eng. Sci. 42, 2361–2372. DOI: 10.1016/0009-2509(87)80110-0.10.1016/0009-2509(87)80110-0Search in Google Scholar

13. Grasa, G., Murillo, R., Alonso, M., Abanades, J.C. (2009). Application of the random pore model to the carbonation cyclic reaction. AIChE J. 55, 1246–1255. DOI: 10.1002/aic.11746.10.1002/aic.11746Search in Google Scholar

14. Bhatia, S.K. & Perlmutter, D.D. (1981). A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 27, 247–254. DOI: 10.1002/aic.690270211.10.1002/aic.690270211Search in Google Scholar

15. Wakao, N. & Smith, J.M. (1962). Diffusion in catalyst pellets. Chem. Eng. Sci. 17, 825–834. DOI: 10.1016/0009-2509(62)87015-8.10.1016/0009-2509(62)87015-8Search in Google Scholar

16. Slattery, J.C. & Bird, R.B. (1958). Calculation of the diffusion coefficient of dilute gases and of the self-diffusion coefficient of dense gases. AIChE J. 4, 137–142. DOI: 10.1002/aic.690040205.10.1002/aic.690040205Search in Google Scholar

17. Smith, J.M., Chemical engineering kinetics, McGraw-Hill, 1981.Search in Google Scholar

18. Barker, R. (1973). The reversibility of the reaction CaCO3, CaO+CO2 J. Appl. Chem. Biotechnol. 23, 733–742. DOI: 10.1002/jctb.5020231005.10.1002/jctb.5020231005Search in Google Scholar

19. Kyaw, K., Kanamori, M., Matsuda, H., Hasatani, M. (1996). Study of Carbonation Reactions of Ca-Mg Oxides for High Temperature Energy Storage and Heat Transformation. J. Chem. Eng. Jpn. 29, 112–118. DOI: 10.1252/jcej.29.112.10.1252/jcej.29.112Search in Google Scholar

20. Mess, D., Sarofim, A.F. & Longwell, J.P. (1999). Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energ Fuels 13, 999–1005. DOI: 10.1021/ef980266f.10.1021/ef980266fSearch in Google Scholar

21. Stendardo, S. & Foscolo, P.U. (2009). Carbon dioxide capture with dolomite: A model for gas–solid reaction within the grains of a particulate sorbent. Chem. Eng. Sci. 64, 2343–2352. DOI: 10.1016/j.ces.2009.02.009.10.1016/j.ces.2009.02.009Search in Google Scholar

22. Anderson, T.F. (1969). Self-diffusion of carbon and oxygen in calcite by isotope exchange with carbon dioxide. J. Geophys. Res. 74, 3918–3932. DOI: 10.1029/JB074i015p03918.10.1029/JB074i015p03918Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering