Open Access

A pore scale study on fluid flow through two dimensional dual scale porous media with small number of intraparticle pores


Cite

1. Pianko-Oprych, P. (2011). Modelling of heat transfer in a packed bed column. Pol. J. Chem. Technol. 13(4), 34–41. DOI: 10.2478/v10026-011-0046-1.10.2478/v10026-011-0046-1Search in Google Scholar

2. Tomaszewska, M. & Bialonczyk, L. (2011). The investigation of ethanol separation by the membrane distillation process. Pol. J. Chem. Technol. 13(3), 66–69. DOI: 10.2478/v10026-011-0040-7.10.2478/v10026-011-0040-7Search in Google Scholar

3. Nakayama, A., Kuwahara, F. & Umemoto, T. (2002). Hayashi, T., Heat and Fluid Flow Within an Anisotropic Porous Medium. J. Heat Transf. 124(4), 746. DOI: 10.1115/1.1481355.10.1115/1.1481355Search in Google Scholar

4. Ozgumus, T., Mobedi, M. & Ozkol, U. (2014). Determination of Kozeny Constant Based On Porosity and Pore to Throat Size Ratio in Porous Medium with Rectangular Rods. Eng. Appl. Comp. Fluid 8, 308–318. DOI: 10.1080/19942060.2014.11015516.10.1080/19942060.2014.11015516Search in Google Scholar

5. Yu, B. & Cheng, P. (2002). A Fractal Permeability Model for Bi-dispersed Porous Media. Int. J. Heat Mass Tran. 45, 2983–2993. DOI: 10.1016/S0017-9310(02)00014-5.10.1016/S0017-9310(02)00014-5Search in Google Scholar

6. Papathanasiou, T.D. (2001). Flow Across Structured Fiber Bundles: A Dimensionless Correlation. Int. J. Multiphas Flow 27, 1451–1461. DOI:10.1016/S0301-9322(01)00013-1.10.1016/S0301-9322(01)00013-1Search in Google Scholar

7. Hwang, W.R. & Advani, S.G. (2010). Numerical Simulations of Stokes–Brinkman Equations for Permeability Prediction of Dual Scale Fibrous Porous Media. Phys Fluids 22(11), 113101. DOI: 10.1063/1.3484273.10.1063/1.3484273Search in Google Scholar

8. Ranganathan, S. (1996). A Generalized Model for the Transverse Fluid Permeability in Unidirectional Fibrous Media. Polym. Composite 17, 222–230. DOI: 10.1002/pc.10607.10.1002/pc.10607Search in Google Scholar

9. Byon, C. & Kim, S.J. (2013). Permeability of Mono- and Bi-dispersed Porous Media. EPJ Web of Conferences 45, 01018. DOI: 10.1051/epjconf/20134501018.10.1051/epjconf/20134501018Search in Google Scholar

10. Nield, D.A. & Kuznetsov, A.V. (2011). Forced Convection in a Channel Partly Occupied by a Bidisperse Porous Medium: Symmetric Case. J. Heat Transf. 133(7), 072601. DOI: 10.1115/1.4003667.10.1115/1.4003667Search in Google Scholar

11. Saada, M.A., Chikh, S. & Campo, A. (2005). Analysis of hydrodynamic and thermal dispersion in porous media by means of a local approach. Heat Mass Transf. 42(11), 995–1006. DOI: 10.1007/s00231-005-0061-y.10.1007/s00231-005-0061-ySearch in Google Scholar

12. Ngo, N.D. & Tamma, K.K. (2001). Microscale Permeability Predictions of Porous Fibrous Media. Int. J. Heat Mass Transf. 44, 3135–3145. DOI: 10.1016/S0017-9310(00)00335-5.10.1016/S0017-9310(00)00335-5Search in Google Scholar

13. Nedanov, P.B. & Advani, S.G. (2002). Numerical Computation of the Fiber Preform Permeability Tensor by the Homogenization Method. Polym. Composite 23, 758–770. DOI: 10.1002/pc.10474.10.1002/pc.10474Search in Google Scholar

14. Tahir, M.W. & Hallström, S. (2014). Åkermo, M., Effect of Dual Scale Porosity on the Overall Permeability of Fibrous Structures. Compos. Sci. Technol. 103, 56–62. DOI: 10.1016/j.compscitech.2014.08.008.10.1016/j.compscitech.2014.08.008Search in Google Scholar

15. Wang, Q., Mazé, B., VahediTafreshi, H. & Pourdeyhimi, B. (2006). A note on permeability simulation of multifilament woven fabrics. Chem. Eng. Sci. 61(24), 8085–8088. DOI:10.1016/j.ces.2006.09.043.10.1016/j.ces.2006.09.043Search in Google Scholar

16. Nabovati, A., Llewellin, E.W. & Sousa, A.C.M. (2010). Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Compos. Part A-Appl. S. 41(4), 453–463. DOI: 10.1016/j.compositesa.2009.11.011.10.1016/j.compositesa.2009.11.011Search in Google Scholar

17. Tung, K.L., Shiau, J.S., Chuang, C.J., Li, Y.L. & Lu, W.M. (2002). CFD analysis on fluid flow through multifilament woven filter cloths. Separ. Sci. Technol. 37(4), 799–821. DOI: 10.1081/SS-120002218.10.1081/SS-120002218Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering