Cite

1. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.10.1016/j.jenvman.2010.11.011Search in Google Scholar

2. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211–212, 317–331. DOI: 10.1016/j.jhazmat.2011.10.016.10.1016/j.jhazmat.2011.10.016Search in Google Scholar

3. Barakat, M.A. (2011). New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377. DOI: 10.1016/j.arabjc.2010.07.019.10.1016/j.arabjc.2010.07.019Search in Google Scholar

4. Khan, T.A., Singh, V. & Ali, I. (2009). Sorption of Cd(II), Pb(II), and Cr(VI) metal ions from wastewater using bottom fly ash as a low cost sorbent. J. Environ. Prot. Sci. 3, 124–132. http://aes.asia.edu.tw/Issues/JEPS2009/KhanTA2009a.pdfSearch in Google Scholar

5. Ali, I., Asim, M. & Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170–183. DOI: 10.1016/j.jenvman.2012.08.028.10.1016/j.jenvman.2012.08.028Search in Google Scholar

6. Khan, T.A., Nazir, M., Ali, I. & Kumar, A. (2013). Removal of chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab. J. Chem. (In press). DOI: 10.1016/j.arabjc.2013.08.019.10.1016/j.arabjc.2013.08.019Search in Google Scholar

7. Khan, T.A., Chaudhry, S.A. & Ali, I. (2015). Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq. 202, 165–175. DOI: 10.1016/j.molliq.2014.12.021.10.1016/j.molliq.2014.12.021Search in Google Scholar

8. Khan, T.A., Dahiya, S. & Ali, I. (2012). Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution, Appl. Clay Sci. 69, 58–66. DOI: 10.1016/j.clay.2012.09.001.10.1016/j.clay.2012.09.001Search in Google Scholar

9. World Health Organization (WHO). (2011). Guidelines for drinking water quality (4th Ed.) 433–434. ISBN: 978 92 4 154815 1.Search in Google Scholar

10. Bhattacharya, A.K., Mandal, S.N. & Das, S.K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem. Eng. J. 123, 43–51. DOI: 10.1016/j.cej.2006.06.012.10.1016/j.cej.2006.06.012Search in Google Scholar

11. Carrott, P.J.M., Ribeiro-Carrot, M.M.L., Nabais, J.M.V. & Prates-Ramalho, J.P. (1997). Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons. Carbon. 35, 403–410. DOI: 10.1016/S0008-6223(97)89611-X.10.1016/S0008-6223(97)89611-XSearch in Google Scholar

12. Silber, A., Bar-Yosef, B., Suryano, S. & Levkovitch, I. (2012). Zinc adsorption by perlite: Effects of pH, ionic strength, temperature, and pre-use as growth substrate. Geoderma 170, 159–167. DOI: 10.1016/j.geoderma.2011.11.028.10.1016/j.geoderma.2011.11.028Search in Google Scholar

13. Kanungo, S.B., Tripathy, S.S., Mishra, S.K. & Sahoo, B. (2004). Adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide from simple (1-1) electrolyte solutions. J. Colloid Interf. Sci. 269(1), 11–21. DOI: 10.1016/j.jcis.2003.07.002.10.1016/j.jcis.2003.07.002Search in Google Scholar

14. Tonkin, J.W., Balistrieri, L.S. & Murray, J.W. (2004). Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl. Geochem. 19, 29–53. DOI: 10.1016/S0883-2927(03)00115-X.10.1016/S0883-2927(03)00115-XSearch in Google Scholar

15. Pan, G., Qin, Y., Li, X., Hu, T., Wu, Z. & Xie, Y. (2004). EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces. I. Irreversible adsorption of zinc onto manganite (γ-MnOOH). J. Colloid Interf. Sci. 271, 28–34. DOI: 10.1016/j.jcis.2003.11.028.10.1016/j.jcis.2003.11.02814757073Search in Google Scholar

16. Della-Puppa, L., Komárek, M., Bordas, F., Bollinger, J.C. & Joussein, E. (2013). Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interf. Sci. 399, 99–106. DOI: 10.1016/j.jcis.2013.02.029.10.1016/j.jcis.2013.02.02923566588Search in Google Scholar

17. Caliskan, N., Kul, A.R., Alkan, S., Sogut, E.G. & Alacabey, I. (2011). Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study. J. Hazard. Mater. 193, 27–36. DOI: 10.1016/j.jhazmat.2011.06.058.10.1016/j.jhazmat.2011.06.05821764214Search in Google Scholar

18. Chen, H., Chu, P.K., He, J., Hu, T. & Yang, M. (2011). Porous magnetic manganese oxide nanostructures: Synthesis and their application in water treatment. J. Colloid Interf. Sci. 359, 68–74. DOI: 10.1016/j.jcis.2011.03.089.10.1016/j.jcis.2011.03.08921507410Search in Google Scholar

19. Bastami, T.R. & Entezari, M.H. (2012). Synthesis of manganese oxide nanocrystal by ultrasonic bath: Effect of external magnetic field. Ultrason. Sonochem. 19, 830–840. DOI: 10.1016/j.ultsonch.2011.11.019.10.1016/j.ultsonch.2011.11.01922221536Search in Google Scholar

20. Sun, M., Lan, B., Yu, L., Ye, F., Song, W., He, J., Diao, G. & Zheng, Y. (2012). Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett. 86, 18–20. DOI: 10.1016/j.matlet.2012.07.011.10.1016/j.matlet.2012.07.011Search in Google Scholar

21. Lu, B., Chen, S. & Kawamoto, K. (2012). Direct hydrothermal synthesis of nanosized mesoporous ramsdellite manganese oxide with high surface area. Mater. Res. Bull. 47, 3619–3624. DOI: 10.1016/j.materresbull.2012.06.052.10.1016/j.materresbull.2012.06.052Search in Google Scholar

22. Kijima, N., Yasuda, H., Sato, T. & Yoshimura, Y. (2001). Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation. J. Solid State Chem. 159, 94–102. DOI: 10.1006/jssc.2001.9136.10.1006/jssc.2001.9136Search in Google Scholar

23. Contreras R. & Lapidus G.T. (1999). Combined water and the ion exchange characteristics of manganese dioxide produced by ozonation. J. Colloid Interf. Sci. 213, 251–267. DOI: 10.1006/jcis.1999.6114.10.1006/jcis.1999.6114Search in Google Scholar

24. Ho Y.S. & McKay G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465.10.1016/S0032-9592(98)00112-5Search in Google Scholar

25. Ho Y.S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater. B136, 681–689. DOI: 10.1016/j.jhazmat.2005.12.043.10.1016/j.jhazmat.2005.12.04316460877Search in Google Scholar

26. Khan T.A., Khan, E.A. & Shahjahan. (2015). Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling. Appl. Clay Sci. 107, 70–77. DOI: 10.1016/j.clay.2015.01.005.10.1016/j.clay.2015.01.005Search in Google Scholar

27. Tang, X., Li, Z. & Chen, Y. (2009). Adsorption behaviour of Zn (II) on calcinated Chinese loess. J. Hazard. Mater. 161(2), 824–834. DOI: 10.1016/j.hazmat.2008.04.059.Search in Google Scholar

28. Puigdomenech, I. (2010). Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA), Royal Institute of Technology, Inorganic Chemistry. 10644 stockolm Sweden. ignasi@inorg.kth.seSearch in Google Scholar

29. Su, Q., Pan, B., Wan, S., Zhang, W. & Lv, L. (2010). Use of hydrous manganese dioxide as potential sorbent for selective removal of lead cadmium and zinc ions from water. J. Colloid Interf. Sci. 349(2), 607–612. DOI: 10.1016/j.jcis.2010.05.052.10.1016/j.jcis.2010.05.05220580012Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering