Open Access

A multiscale methodology for CFD simulation of catalytic distillation bale packings


Cite

1. Klöker, M., Kenig, E.Y., Górak, A., Markusse, A.P., Kwant, G. & Moritz, P. (2004). Investigation of different column configurations for the ethyl acetate synthesis via reactive distillation. Chem. Eng. Process. 43, 791–801. DOI: 10.1016/S0255-2701(03)00084-9.10.1016/S0255-2701(03)00084-9Search in Google Scholar

2. Tian, H., Huang, Z., Qiu, T., Wang, X.D. & Wu, Y.X. (2012). Reactive distillation for producing n-butyl acetate: Experiment and simulation. Chin. J. Chem. Eng. 20(5), 980–987. DOI: 10.1016/S1004-9541(12)60426-1.10.1016/S1004-9541(12)60426-1Search in Google Scholar

3. Agarwal, M., Singh, K. & Chaurasia, S.P. (2012). Simulation and sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Technol. 14, 59–65. DOI: 10.2478/v10026-012-0085-2.10.2478/v10026-012-0085-2Search in Google Scholar

4. Zhang, X., Zhang, S. & Jian, C. (2011). Synthesis of methylal by catalytic distillation. Chem. Eng. Res. Des. 89, 573–580. DOI: 10.1016/j.cherd.2010.09.002.10.1016/j.cherd.2010.09.002Search in Google Scholar

5. Huang, K. & Wang, S.J. (2007). Design and control of a methyl tertiary butyl ether (MTBE) decomposition reactive distillation column. Ind. Eng. Chem. Res. 46, 2508–2519. DOI: 10.1021/ie061204c.10.1021/ie061204cSearch in Google Scholar

6. Vanaki, A. & Eslamloueyan, R. (2012). Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME). Chem. Eng. Process. 52, 21–27. DOI: 10.1016/j.cep.2011.12.005.10.1016/j.cep.2011.12.005Search in Google Scholar

7. Bisowarno, B.H., Tian, Y.C. & Tadé, M.O. (2004). Application of side reactors on ETBE reactive distillation. Chem. Eng. J. 99, 35–43. DOI: 10.1016/j.cej.2003.09.004.10.1016/j.cej.2003.09.004Search in Google Scholar

8. González-Rugerio, C.A., Fuhrmeister, R., Sudhoff, D., Pilarczyk, J. & Górak, A. (2014). Optimal design of catalytic distillation columns: A case study on synthesis of TAEE. Chem. Eng. Res. Des. 92, 391–404. DOI: 10.1016/j.cherd.2013.08.030.10.1016/j.cherd.2013.08.030Search in Google Scholar

9. Xu, X., Zhao, Z. & Tian, S. (1997). Study on catalytic distillation processes part III: Prediction of pressure drop and holdup in catalyst bed. Trans IChemE. 75, 625–629. DOI: 10.1205/026387697524155.10.1205/026387697524155Search in Google Scholar

10. Ding, H.D., Xiang, W.Y., Song, N., Liu, C.J. & Yuan, X.G. (2014). Hydrodynamic behavior and residence time distribution of industrial-scale bale packings. Chem. Eng. Technol. 37(7), 1127–1136. DOI: 10.1002/ceat.201300824.10.1002/ceat.201300824Search in Google Scholar

11. Ratheesh, S. & Kannan, A. (2004). Holdup and pressure drop studies in structured packings with catalysts. Chem. Eng. J. 104, 45–54. DOI: 10.1016/j.cej.2004.08.004.10.1016/j.cej.2004.08.004Search in Google Scholar

12. Behrens, M., Olujić, Ž. & Jansens, P.J. (2007). Liquid flow behavior in catalyst-containing pockets of modular catalytic structured packing Katapak SP. Ind. Eng. Chem. Res. 46, 3884–3890. DOI: 10.1021/ie060985e.10.1021/ie060985eSearch in Google Scholar

13. Kołodziej, A., Jaroszyński, M., Schoenmakers, H., Althaus, K., Geißler, E., Üblerb, C. & Kloeker, M. (2005). Dynamic tracer study of column packings for catalytic distillation. Chem. Eng. Process. 44, 661–670. DOI: 10.1016/j.cep.2004.05.017.10.1016/j.cep.2004.05.017Search in Google Scholar

14. Noeres, C., Hoffmann, A. & Górak, A. (2002). Reactive distillation: Non-ideal flow behaviour of the liquid phase in structured catalytic packings. Chem. Eng. Sci. 57, 1545–1549. DOI: 10.1016/S0009-2509(02)00028-3.10.1016/S0009-2509(02)00028-3Search in Google Scholar

15. Viva, A., Aferka, S., Brunazzi, E., Marchot, P., Crine, M. & Toye, D. (2011). Processing of X-ray tomographic images: A procedure adapted for the analysis of phase distribution in MellapakPlus 752.Y and Katapak-SP packings. Flow. Meas. Instrum. 22, 279–290. DOI: 10.1016/j.flowmeasinst.2011.03.008.10.1016/j.flowmeasinst.2011.03.008Search in Google Scholar

16. Viva, A., Aferka, S., Toye, D., Marchot, P., Crine, M. & Brunazzi, E. (2011). Determination of liquid hold-up and flow distribution inside modular catalytic structured packings. Chem. Eng. Res. Des. 89, 1414–1426. DOI: 10.1016/j.cherd.2011.02.009.10.1016/j.cherd.2011.02.009Search in Google Scholar

17. Aferka, S., Marchot, P., Crine, M. & Toye, D. (2010). Interfacial area measurement in a catalytic distillation packing using high energy X-ray CT. Chem. Eng. Sci. 65, 511–516. DOI: 10.1016/j.ces.2009.05.048.10.1016/j.ces.2009.05.048Search in Google Scholar

18. van Baten, J.M. & Krishna, R. (2002). Gas and liquid phase mass transfer within KATAPAK-S® structures studied using CFD simulations. Chem. Eng. Sci. 57, 1531–1536. DOI: 10.1016/S0009-2509(02)00026-X.10.1016/S0009-2509(02)00026-XSearch in Google Scholar

19. van Baten, J.M. & Krishna, R. (2001). Liquid-phase mass transfer within KATAPAK-S® structures studied using computational fluid dynamics simulations. Catal. Today. 69, 371–377. DOI: 10.1016/S0920-5861(01)00394-7.10.1016/S0920-5861(01)00394-7Search in Google Scholar

20. van Baten, J.M., Ellenberger J., Krishna R. (2001). Radial and axial dispersion of the liquid phase within a KATAPAK-S® structure: experiments vs. CFD simulations. Chem. Eng. Sci. 56, 813–821. DOI: 10.1016/S0009-2509(00)00293-1.10.1016/S0009-2509(00)00293-1Search in Google Scholar

21. Dai, C., Lei, Z., Li, Q. & Chen, B. (2012). Pressure drop and mass transfer study in structured catalytic packings. Sep. Purif. Technol. 98, 78–87. DOI: 10.1016/j.seppur.2012.06.035.10.1016/j.seppur.2012.06.035Search in Google Scholar

22. van Gulijk, C. (1998). Using computational fluid dynamics to calculate transversal dispersion in a structured packed bed. Comput. Chem. Eng. 22, S767–S770. DOI: 10.1016/S0098-1354(98)00144-6.10.1016/S0098-1354(98)00144-6Search in Google Scholar

23. Klöker, M., Kenig, E.Y. & Górak, A. (2003). On the development of new column internals for reactive separations via integration of CFD and process simulation. Catal. Today. 79–80, 479–485. DOI: 10.1016/S0920-5861(03)00068-3.10.1016/S0920-5861(03)00068-3Search in Google Scholar

24. Egorov, Y., Menter, F., Klöker, M. & Kenig, E.Y. (2005). On the combination of CFD and rate-based modeling in the simulation of reactive separation processes. Chem. Eng. Process. 44, 631–644. DOI: 10.1016/j.cep.2003.10.011.10.1016/j.cep.2003.10.011Search in Google Scholar

25. Petre, C.F., Larachi, F., Iliuta, I. & Grandjean, B.P.A. (2003). Pressure drop through structured packings: Breakdown into the contributing mechanisms by CFD modeling. Chem. Eng. Sci. 58, 163–177. DOI: 10.1016/S0009-2509(02)00473-6.10.1016/S0009-2509(02)00473-6Search in Google Scholar

26. Larachi, F., Petre, C.F., Iliuta, I. & Grandjean, B.P.A. (2003). Tailoring the pressure drop of structured packings through CFD simulations. Chem. Eng. Process. 42, 535–541. DOI: 10.1016/S0255-2701(02)00073-9.10.1016/S0255-2701(02)00073-9Search in Google Scholar

27. Sun, B., He, L., Liu, B.T., Gu, F., Liu, C.J. (2013). A new multiscale model based on CFD and macroscopic calculation for corrugated structured packing column. AIChE. J. 59, 3119–3130. DOI: 10.1002/aic.14082.10.1002/aic.14082Search in Google Scholar

28. Atta, A., Roy, S., Nigam, K.D.P. (2007). Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chem. Eng. Sci. 62, 7033–7044. DOI: 10.1016/j.ces.2007.07.069.10.1016/j.ces.2007.07.069Search in Google Scholar

29. Fluent Inc., FLUENT 6.3 Documentation, ANSYS Inc., USA, 2006[2014-05-15], http://aerojet.engr.ucdavis.edu/fluenthelp/html/ug/node1.htmSearch in Google Scholar

30. Hosseini, S.H., Shojaee, S., Ahmadi, G. & Zivdar, M. (2012). Computational fluid dynamics studies of dry and wet pressure drops in structured packings. J. Ind. Eng. Chem. 18, 1465–1473.10.1016/j.jiec.2012.02.012Search in Google Scholar

31. Jackson, G.W. & James, D.F. (1986). The permeability of fibrous porous media. Can. J. Chem. Eng. 64, 364–374. DOI: 10.1002/cjce.5450640302.10.1002/cjce.5450640302Search in Google Scholar

32. Caetano, M.G., González, J.C. & Solari, R.B. (2004). Flowdynamic modeling of bale-type catalytic distillation packings. Sep. Sci. Tech. 39, 855–877. DOI: 10.1081/SS-120028450.10.1081/SS-120028450Search in Google Scholar

33. Akbarnejad, M.M., Safekordi, A.A. & Zarrinpashne, S. (2000). A study on the capacity of reactive distillation bale packings: Experimental measurements, evaluation of the existing models, and preparation of a new model. Ind. Eng. Chem. Res. 39, 3051–3058. DOI: 10.1021/ie9904706.10.1021/ie9904706Search in Google Scholar

34. Rocha, J.A., Bravo, J.L. & Fair, J.R. (1996). Distillation columns containing structured packings: A comprehensive model for their performance. 2. mass-transfer model. Ind. Eng. Chem. Res. 35, 1660–1667.10.1021/ie940406iSearch in Google Scholar

35. de Brito, M.H., von Stockar, U., Bangerter, A.M., Bomio, P. & Laso, M. (1994). Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings. Ind. Eng. Chem. Res. 33, 647–656. DOI: 10.1021/ie00027a023.10.1021/ie00027a023Search in Google Scholar

36. Brunazzi, E., Nardini, G., Paglianti, A. & Petarca, L. (1995). Interfacial area of mellapak packing: absorption of 1,1,1-trichloroethane by genosorb 300. Chem. Eng. Technol. 18, 248–255. DOI: 10.1002/ceat.270180405.10.1002/ceat.270180405Search in Google Scholar

37. Billet, R. & Schultes, M. (1995). Fluid dynamics and mass transfer in the total capacity range of packed columns up the flood point. Chem. Eng. Technol. 18, 371–379. DOI: 10.1002/ceat.270180602.10.1002/ceat.270180602Search in Google Scholar

38. Olujić, Ž., Kamerbeek, A.B. & de Graauw, J. (1999). A corrugation geometry based model for efficiency of structured distillation packing. Chem. Eng. Process. 38, 683–695. DOI: 10.1016/S0255-2701(99)00068-9.10.1016/S0255-2701(99)00068-9Search in Google Scholar

39. Hoek, P.J., Wessinlingh, J.A. & Zuiderweg, F.J. (1986). Small scale and large scale liquid mal-distribution in packed columns. Chem. Eng. Res. Des. 64, 431–449.Search in Google Scholar

40. Christiansen, J.E. (1948). Irrigation by Sprinkling, University of California Press, USA.Search in Google Scholar

41. Chinese National Standard. GB50085-2007T.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering