Cite

1. Eda, G. & Chhowalla, M. (2010). Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415. DOI: 10.1002/adma.200903689.10.1002/adma.200903689Search in Google Scholar

2. Stankovich, S., Dikin, D.A., Piner, R.D.,. Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565. DOI:10.1016/j.carbon.2007.02.034.10.1016/j.carbon.2007.02.034Search in Google Scholar

3. Wong, C., Jankovsky, O., Sofer, Z. & Pumera, M. (2014). Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77, 508–517. DOI: 10.1016/j.carbon.2014.05.056.10.1016/j.carbon.2014.05.056Search in Google Scholar

4. Drewniak, S., Pustelny, T., Muzyka, R., Konieczny, G. & Kałużyński, P. (2014). The effect of oxidation and reduction processes on physicochemical properties of graphite oxide and reduced graphene. Photo. Lett. Pol. 6(4) 130–132. DOI: 10.4302/plp.2014.4.06.10.4302/plp.2014.4.06Search in Google Scholar

5. McAllister, M., Li, J., Adamson, D., Schniepp, A.A., Liu, J., Herrera-Alonso, M., Milius, D., Car, R., Prud’homme, R. & Aksay, A. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite., Chem. Mater. 19(18), 4396–4404. DOI: 10.1021/cm0630800.10.1021/cm0630800Search in Google Scholar

6. Lipińska, L., Koziński, R., Jagiełło J., Librant, K., Aksienionek, M. & Wiliński, Z. (2012). Chemical methods of obtaining graphene flakes. Chem. Przem. 5, 16–19. (In Polish).Search in Google Scholar

7. Pacile, D., Meyyer, J., Rodriguez, A., Papagno, M., Gomez-Navarro, C., Sundaram, R., Burghard, M., Kern, K., Carbone, C. & Kaiser, U. (2011). Electronic properties and atomic structure of graphene oxide membranes. Carbon 49, 966–972. DOI: 10.1016/j.carbon.2010.09.063.10.1016/j.carbon.2010.09.063Search in Google Scholar

8. Sheng, K., Xu, Y., Li, C. & Shi, G. (2011). High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26(1), 9–15. DOI: 10.1016/S1872-5805(11)60062-0.10.1016/S1872-5805(11)60062-0Search in Google Scholar

9. Schwamb, T., Burg, B.R., Schirmer, N.C. & Poulikakos, D. (2009). An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704(5pp). DOI: 10.1088/0957-4484/20/40/405704.10.1088/0957-4484/20/40/40570419738310Search in Google Scholar

10. Basu, S. & Bhattacharyya. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B: Chemical. 173, 1–21 DOI: 10.1016/j.snb.2012.07.092.10.1016/j.snb.2012.07.092Search in Google Scholar

11. Drewniak, S., Pustelny, T., Muzyka, R., Stolarczyk, A. & Konieczny, G. (2015). Investigations of selected physical properties of graphite oxide and thermally exfoliated/reduced graphene oxide in the aspect of their applications in photonic gas sensors. Photo. Lett. Pol. 7(2), 47–49. DOI: 10.4302/plp.2015.2.06.10.4302/plp.2015.2.06Search in Google Scholar

12. Hu, N., Yang, Z., Wang, Y., Zhang, L., Wang, Y., Huang, X., Wei, H., Wei, L. & Zhang, Y. (2014). Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 1–9. DOI: 10.1088/0957-4484/25/2/025502.10.1088/0957-4484/25/2/02550224334417Search in Google Scholar

13. Pustelny, T., Procek, M., Maciak, E., Stolarczyk, A., Drewniak, S., Urbanczyk, M., Setkiewicz, M., Gut, K. & Opilski, Z. (2012). Gas sensors based on nanostructures of semiconductors ZnO and TiO2. Bull. Pol. Ac.: Tech. 60 (4), 853–859. DOI: 10.2478/v10175-012-0099-1.10.2478/v10175-012-0099-1Search in Google Scholar

14. Pustelny, T., Setkiewicz, M., Drewniak, S., Maciak, E., Stolarczyk, A., Procek, M., Urbanczyk, M., Gut, K., Opilski, Z., Pasternak, I. & Strupinski, W. (2012). The Influence of Humidity on the Resistance Structures with Graphene Sensor Layer. Acta Phy. Polon. A 122, 870–873. ISSN: 05874246.10.12693/APhysPolA.122.870Search in Google Scholar

15. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K. & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625. DOI: 10.1126/science.287.5453.622.10.1126/science.287.5453.62210649989Search in Google Scholar

16. Dobrzanska-Danikiewicz, A.D., Cichocki, D., Łukowiec, D. & Wolany, W. (2014). Carbon nanotubes synthesis time versus their layer height. Arch. Mater. Sci. Engine. 69(1), 5–11. ISSN 18972764Search in Google Scholar

17. Pustelny, T., Drewniak, S., Setkiewicz, M., Maciak, E., Urbańczyk, M., Procek, M. Gut, K. Opilski, Z., Jagiello, J. & Lipinska. L. (2013) The sensitivity of sensor structures with oxide graphene exposed to selected gaseous atmospheres. Bull. Pol. Ac.: Tech. 61(3), 705–710. DOI: 10.2478/bpasts-2013-0075.10.2478/bpasts-2013-0075Search in Google Scholar

18. Drewniak, S., Pustelny, T., Setkiewicz, M., Maciak, E., Urbańczyk, M., Procek, M., Opilski, Z., Jagiello, J. & Lipinska, L. (2013). Investigations of SAW Structures with Oxide Graphene Layer to Detection of Selected Gases. Acta Phys. Polon. A 124(3), 402–405. DOI: 10.12693/APhysPolA.124.402.10.12693/APhysPolA.124.402Search in Google Scholar

19. Wang, S., Geng, Y., Zheng, Q. & Kim, J. (2010). Fabrication of highly conducting and transparent graphene films. Carbon 48, 1815–1823. DOI: 10.1016/j.carbon.2010.01.027.10.1016/j.carbon.2010.01.027Search in Google Scholar

20. Dikin, D., Stankovich, S., Zimney, E., Piner, R., Dommett, G., Evmenenko, G. &Ruoff, R. (2007). Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460. DOI: 10.1038/nature06016.10.1038/nature0601617653188Search in Google Scholar

21. Hummers, W.S. (1954). U.S. Patent No. 2,798,878. Detroit, Mich.: United States Patent Office.Search in Google Scholar

22. Eigler, S., Dotzer, C. & Hirsch, A. (2012). Visualization of defect densities in reduced graphene oxide. Carbon 50(10), 3666–3673. DOI: 10.1016/j.carbon.2012.03.039.10.1016/j.carbon.2012.03.039Search in Google Scholar

23. Zhang, C., Lv, W., Xie, X., Tang, D., Liu, C. &Yang, Q.H. (2013). Review Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62, 11–24. DOI: 10.1016/j.carbon.2013.05.033.10.1016/j.carbon.2013.05.033Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering