Open Access

Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization


Cite

1. Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat. Mater. 6, 183–191. DOI: 10.1038/nmat1849.10.1038/nmat1849Search in Google Scholar

2. Katsnelson, M.I. (2007). Graphene: carbon in two dimensions. Mater. Today 10, 20–27. DOI: 10.1016/S1369-7021(06)71788-6.10.1016/S1369-7021(06)71788-6Search in Google Scholar

3. Loh, K.P., Bao, Q., Ang, P.K. & Yang, J. (2010). The chemistry of graphene. J. Mater. Chem. 20, 2277–2289. DOI: 10.1039/b920539j.10.1039/b920539jSearch in Google Scholar

4. Loh, K.P., Bao, Q., Eda, G. & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024. DOI: 10.1038/nchem.907.10.1038/nchem.90721107364Search in Google Scholar

5. Lerf, A., He, H. & Forster, M. (1998). Structure of graphite oxide revisited. J. Phys. Chem. B. 102, 4477–4482. DOI: 10.1021/jp9731821.10.1021/jp9731821Search in Google Scholar

6. Wang, S., Goh, B.M., Manga, K.K., Bao, Q., Yang, P. & Loh, K.P. (2010). Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene−Organic Hybrid Wire with Photovoltaic Properties. ACS Nano 4, 6180–6186. DOI: 10.1021/nn101800n.10.1021/nn101800n20825226Search in Google Scholar

7. Hu, H., Allan, C.C. K., Li, J., Kong, Y., Wang, X., Xin, J. H. & Hu, H. (2014). Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 7, 418–433. DOI: 10.1007/s12274-014-0408-0.10.1007/s12274-014-0408-0Search in Google Scholar

8. Muszynski, R., Seger, B. & Kamat, P.V. (2008). Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C 112, 5263–5266. DOI: 10.1021/jp800977b.10.1021/jp800977bSearch in Google Scholar

9. Zhu, J., Zhu, T., Zhou, X, Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. &Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G.10.1039/C0NR00744G21180729Search in Google Scholar

10. Ling, Q., Yang, M., Li, C.S. & Zhang, A.M. (2015). Preparation of Monolayered Ce-Fe Oxides Dispersed on Graphene and Their Superior Adsorptive Behavior, Fuller. Nanotub. Car. N. 23, 158–164. DOI: 10.1080/1536383X.2013.863759.10.1080/1536383X.2013.863759Search in Google Scholar

11. Li, C.X., Hu, C.G., Zhao, Y., Song, L., Zhang, J., Huang, R.D. & Qu, L.T. (2014). Decoration of graphene network with metal-organic frameworks for enhanced electrochemical capacitive behavior, Carbon 78, 231–242. DOI: 10.1016/j.carbon.2014.06.076.10.1016/j.carbon.2014.06.076Search in Google Scholar

12. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X. & Chen, G.N. (2009). Angew. Chem. Int. Ed. 121, 4879–4881. DOI: 10.1002/ange.200901479.10.1002/ange.200901479Search in Google Scholar

13. Huang, J., Zheng Q., Kim, J.K. & Li, Z. (2013). A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosens. Bioelectron. 43, 379–383. DOI: 10.1016/j.bios.2012.12.056.10.1016/j.bios.2012.12.05623357003Search in Google Scholar

14. Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian W. & Wei, F. (2010). A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 22, 3723–3728. DOI: 10.1002/adma.201001029.10.1002/adma.20100102920652901Search in Google Scholar

15. Lim, S., Kang, B., Kwak, D., Lee, W.H., Lim, J.A. & Cho, K. (2012). Inkjet-Printed Reduced Graphene Oxide/Poly(VinylAlcohol) Composite Electrodes for Flexible Transparent Organic Field-Effect Transistors. J. Phys. Chem. C. 116, 7520–7525. DOI: 10.1021/jp203441e.10.1021/jp203441eSearch in Google Scholar

16. Dixon, D., Lemonine, P., Hamilton, J., Lubarsky, G. & Archer, E. (2015). Graphene oxide-polyamide 6 nanocomposites produced via in situ polymerization. J. Thermoplast. Compos. 28, 372–389. DOI: 10.1177/0892705713484749.10.1177/0892705713484749Search in Google Scholar

17. Wojtoniszak, M., Urbas, K., Peruzynska, M., Kurzawski, M., Drozdzik, M. & Mijowska, E. (2013). Covalent conjugation of graphene oxide with methotrexate and its antitumor activity, Chem. Phys. Lett. 568, 151–156. DOI: 10.1016/j.cplett.2013.03.050.10.1016/j.cplett.2013.03.050Search in Google Scholar

18. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C. & Brus, L.E. (2009). Photochemical Reactivity of Graphene. J. Am. Chem. Soc. 131, 17099–17101. DOI: 10.1021/ja9043906.10.1021/ja904390619902927Search in Google Scholar

19. Zhu, J., Zhu, T., Zhou, X., Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. & Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G.10.1039/C0NR00744GSearch in Google Scholar

20. Shi, W., Zhu, J., Sim, D.H., Tay, Y.Y., Lu, Z.Y., Zhang, X.J., Zhang, H., Hng, H.H. & Yan, Q.Y. (2011). Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21, 3422–3427. DOI: 10.1039/C0JM03175E.10.1039/c0jm03175eSearch in Google Scholar

21. Li, Y., Tang, L. & Li, J. (2009). Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846–849. DOI: 10.1016/j.elecom.2009.02.009.10.1016/j.elecom.2009.02.009Search in Google Scholar

22. Xie, L, Ling, X., Fang, Y., Zhang, J. & Liu, Z. (2009). Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 131, 9890–9891. DOI: 10.1021/ja9037593.10.1021/ja903759319572745Search in Google Scholar

23. Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F.Y.C., Yan, Q., Chen, P. & Zhang, H. (2009). In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846. DOI: 10.1021/jp903821n.10.1021/jp903821nSearch in Google Scholar

24. Liu, J.B., Fu, S.H., Yuan, B., Li, Y.L. & Deng, Z.X. (2010). Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281. DOI: 10.1021/ja100938r.10.1021/ja100938r20462190Search in Google Scholar

25. Shen, J.F., Shi, M., Li, N., Yan, B., Ma, H.W., Hu, Y.Z., & Ye, M.X. (2010). Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 3, 339–349. DOI: 10.1007/s12274-010-1037-x.10.1007/s12274-010-1037-xSearch in Google Scholar

26. Scheuermann, G.M., Rumi, L., Steurer, P., Bannwarth, W. & Mulhaupt, R. (2009). Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270. DOI: 10.1021/ja901105a.10.1021/ja901105a19469566Search in Google Scholar

27. Johnson, J.L., Behnam, A., Pearton, S.J. & Ural, A. (2010). Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Adv. Mater. 22, 4877–4880. DOI: 10.1002/adma.201001798.10.1002/adma.20100179820803539Search in Google Scholar

28. Si, Y.C. & Samulski, E.T. (2008). Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater. 20, 6792–6797. DOI: 10.1021/cm801356a.10.1021/cm801356aSearch in Google Scholar

29. Hassan, H.M.A., Abdelsayed, V., Khder, A., AbouZeid, K. M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., El-Azhary, A.A. (2009). Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837. DOI: 10.1039/b906253j.10.1039/b906253jSearch in Google Scholar

30. Pavithra, C.L.P., Sarada, B.V., Rajulapati, K.V., Rao, T.N. & Sundararajan, G. (2014). A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness. Sci. Rep. 4, 4049. DOI: 10.1038/srep04049.10.1038/srep04049392034224514043Search in Google Scholar

31. Ji, Z., Shen, X., Zhu, G., Zhou, H. & Yuan, A. (2012). Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J. Mater. Chem. 22, 3471–3477. DOI: 10.1039/C2JM14680K.10.1039/c2jm14680kSearch in Google Scholar

32. Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X. & Sun, D.D. (2010). Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications. Adv. Funct. Mater. 20, 4175–4181. DOI: 10.1002/adfm.201001391.10.1002/adfm.201001391Search in Google Scholar

33. Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., Wang, D. & Jiang, L. (2010). Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano 5, 590–596. DOI: 10.1021/nn102767d.10.1021/nn102767d21189003Search in Google Scholar

34. Yin, Z., Wu, S., Zhou, X., Huang, X., Zhang, Q., Boey, F. & Zhang, H. (2010). Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6, 307–312. DOI: 10.1002/smll.200901968.10.1002/smll.20090196820039255Search in Google Scholar

35. Zhang, L.S., Jiang, L.Y., Yan, H.J., Wang, W.D., Wang, W., Song, W.G., Guo, Y.G. & Wan, L.J. (2010). Monodispersed SnO2 Nanoparticles on both Sides of Single Layer Graphene Sheets as Anode Materials in Li-ion Batteries. J. Mater. Chem. 20, 5462–5467. DOI: 10.1039/C0JM00672F.10.1039/c0jm00672fSearch in Google Scholar

36. Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M. & Wei, F. (2010). Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833. DOI: 10.1016/j.carbon.2010.06.047.10.1016/j.carbon.2010.06.047Search in Google Scholar

37. Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y. & Chen, Y. (2009). Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710–2714. DOI: 10.1039/b821416f.10.1039/b821416fSearch in Google Scholar

38. Liang, J., Xu, Y., Sui, D., Zhang, L., Huang, Y., Ma, Y., Li, F. & Chen, Y. (2010). Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 114, 17465–17471. DOI: 10.1021/jp105629r.10.1021/jp105629rSearch in Google Scholar

39. Innocenzi, P., Malfatti, L., Lasio, B., Pinna, A., Loche, D., Casula, M.F., Alzari, V. & Mariani, A. (2014). Sol–gel chemistry for graphene–silica nanocomposite films. New J. Chem. 38, 3777–3782. DOI: 10.1039/C4NJ00535J.10.1039/C4NJ00535JSearch in Google Scholar

40. Jiang, N., Xiu, Z., Xie, Z., Li, H., Zhao, G., Wang, W., Wu, Y. & Hao, X. (2014). Reduced graphene oxide–CdS nanocomposites with enhanced visible-light photoactivity synthesized using ionic-liquid precursors. New J. Chem. 38, 4312–4320. DOI: 10.1039/C4NJ00152D.10.1039/C4NJ00152DSearch in Google Scholar

41. Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., Pan, N., Yan, L., Wang, X. & Hou, J.G. (2010). Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 4, 3033–3038. DOI: 10.1021/nn100134j.10.1021/nn100134j20499858Search in Google Scholar

42. Allen, M.J., Tung, V.C. & Kaner, R.B. (2009). Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145. DOI: 10.1021/cr900070d.10.1021/cr900070d19610631Search in Google Scholar

43. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814. DOI: 10.1021/nn1006368.10.1021/nn100636820731455Search in Google Scholar

44. Sun, Z., Rong, Z., Wang, Y., Xia, Y., Du, W. & Wang, Y. (2014). Selective hydrogenation of cinnamaldehyde over Pt nanoparticles deposited on reduced graphene oxide. RSC Adv. 4, 1874–1878. DOI: 10.1039/C3RA44962A.10.1039/C3RA44962ASearch in Google Scholar

45. Some, S., Kim, Y., Yoon, Y., Yoo, H.J., Lee, S., Park, Y. & Lee, H. (2013). High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 3, 1–5. DOI:10.1038/srep01929.10.1038/srep01929366831923722643Search in Google Scholar

46. Satish, B., Venkateswara, R.K., Shilpa, C.C.H. & Tejaswi, T. (2013). Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebseilla and Staphylococus. Int. J. Adv. Biotechnol. Res. 4, 142–146.Search in Google Scholar

47. Reich, S.S. & Thomsen, C. (2004). Raman spectroscopy of graphite. Phil. Trans. R. Soc. Lond. A 362, 2271–2288. DOI: 10.1098/rsta.2004.1454.10.1098/rsta.2004.145415482979Search in Google Scholar

48. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prudhomme, R.K., Aksay, I.A. & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41. DOI: 10.1021/nl071822y.10.1021/nl071822y18154315Search in Google Scholar

49. Charlier, J.C., Eklund, P.C., Zhu, J. & Ferrari, A.C. (2008). Electron and phonon properties of graphene: their relationship with carbon nanotubes. Top Appl. Phys. 111, 673–709. DOI: 10.1007/978-3-540-72865-8_21.10.1007/978-3-540-72865-8_21Search in Google Scholar

50. Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M. & Grossman, J.C. (2014). Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6, 151–158. DOI: 10.1038/nchem.1820.10.1038/nchem.182024451592Search in Google Scholar

51. Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P. & Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5, 191–198. DOI: 10.1021/nn102339t.10.1021/nn102339t21230006Search in Google Scholar

52. Hyde, T. (2008). Crystallite Size Analysis of Supported Platinum Catalysts by XRD. Platinum Metals Rev. 52, 129–130. DOI: 10.1595/147106708X299547.10.1595/147106708X299547Search in Google Scholar

53. Liu, S., Wang, J., Zeng, J., Ou, J., Li, Z., Liu, X. & Yang, S. (2010). „Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Pow. Sour. 195, 4628–4633. DOI: 10.1016/j.jpowsour.2010.02.024.10.1016/j.jpowsour.2010.02.024Search in Google Scholar

54. Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. (2011). Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. 115, 17009–17019. DOI: 10.1021/jp203741y.10.1021/jp203741ySearch in Google Scholar

55. Yuan, J.K., Li, W.N., Gomez, S. & Suib, S.L. (2005). Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. J. Am. Chem. Soc. 127, 14184–14185. DOI: 10.1021/ja053463j.10.1021/ja053463j16218603Search in Google Scholar

56. Yuan, J., Laubernds, K., Zhang, Q. & Suib, S.L. (2003). Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres. J. Am. Chem. Soc. 125, 4966–4967. DOI: 10.1021/ja0294459.10.1021/ja029445912708832Search in Google Scholar

57. Li, Z., Wang, J., Wang, Z., Ran, H., Yang Li, Y., Han, X. & Yang, S. (2012). Synthesis of a porous birnessite manganese dioxide hierarchical structure using thermally reduced graphene oxide paper as a sacrificing template for supercapacitor application. New J. Chem. 36, 1490–1495. DOI: 10.1039/c2nj21052e.10.1039/c2nj21052eSearch in Google Scholar

58. Gui, Z., Gillette, E., Duay, J., Hu, J., Kim, N. & Lee, S. B. (2015). Co-electrodeposition of RuO2–MnO2 nanowires and the contribution of RuO2 to the capacitance increase. Phys. Chem. Chem. Phys. 17, 15173–15180. DOI: 10.1039/C5CP01814E.10.1039/C5CP01814ESearch in Google Scholar

59. Abdolhosseinzadeh, S., Asgharzadeh, H., & Kim, H.S. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 1–7. DOI: 10.1038/srep10160.10.1038/srep10160443237225976732Search in Google Scholar

60. Stankovich, S., Dikina, D.A., Pinera, R.D., Kohlhaasa, K. A., Kleinhammesc, A., Jiac, Y., Wuc, Y., Nguyenb, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.10.1016/j.carbon.2007.02.034Search in Google Scholar

61. Kalbac, M., Reina-Cecco, A., Farhat, H., Kong, J., Kavan, L. & Dresselhaus, M.S. (2010). The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 4, 6055–6063. DOI: 10.1021/nn1010914.10.1021/nn101091420931995Search in Google Scholar

62. Casiraghi, C. (2009). Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi. 3, 175–177. DOI: 10.1002/pssr.200903135.10.1002/pssr.200903135Search in Google Scholar

63. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C. & Sood, A.K. (2008). Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnol. 3, 210–215. DOI: 10.1038/nnano.2008.67.10.1038/nnano.2008.6718654505Search in Google Scholar

64. Heydrich, S., Hirmer, M., Preis, C., Korn, T., Eroms, J., Weiss, D. & Schüller, C. (2010). Scanning Raman spectroscopy of graphene antidot lattices: evidence for systematic p-type doping. Appl. Phys. Lett. 97, 043113-1. DOI: 10.1063/1.3474613.10.1063/1.3474613Search in Google Scholar

65. Lee, J., Novoselov, K.S. & Shin, H.S. (2011). Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5, 608–612. DOI: 10.1021/nn103004c.10.1021/nn103004c21174405Search in Google Scholar

66. Wang, W.X., Liang, S.H., Yu, T., Li, D.H., Li, Y.B. & Han, X.F. (2011). The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 109, 07C501-07C501-3. DOI: 10.1063/1.3536670.10.1063/1.3536670Search in Google Scholar

67. Iqbal, M.W., Singh, A.K., Iqbal, M.Z. & Eom, J. (2012). Raman fingerprint of doping due to metal adsorbates on graphene. J. Phys.: Condens. Matter. 24, 335301–335308. DOI: 10.1088/0953-8984/24/33/335301.10.1088/0953-8984/24/33/33530122814217Search in Google Scholar

68. Lucchese, M.M., Stavale, F., Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A. & Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597. DOI: 10.1016/j.carbon.2009.12.057.10.1016/j.carbon.2009.12.057Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering