Open Access

Carbon-based acid catalyst from waste seed shells: preparation and characterization


Cite

1. Karmakar, A., Karmakar, S. & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 101(19), 7201–7210. DOI: 10.1016/j.biortech.2010.04.079.10.1016/j.biortech.2010.04.079Search in Google Scholar

2. Chavez, E., Liu, D. & Zhao, X.B. (2010). Biofuels Production Development and Prospects in China. J. Biobased Mater. Bio. 4(3), 221–242. DOI: 10.1166/jbmb.2010.1088.10.1166/jbmb.2010.1088Search in Google Scholar

3. Ramadhas, A.S., Jayaraj, S. & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel 84(4), 335–340. DOI: 10.1016/j.fuel.2004.09.016.10.1016/j.fuel.2004.09.016Search in Google Scholar

4. Avhad, M. & Marchetti, J. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renew. Sust. Energ. Rev. 50(1), 696–718. DOI: 10.1016/j.rser.2015.05.038.10.1016/j.rser.2015.05.038Search in Google Scholar

5. Ding, J.C., He, B.Q. & Li, J.X. (2011). Cation Ion-Exchange Resin/Polyethersulfone Hybrid Catalytic Membrane for Biodiesel Production. J. Biobased Mater. Bio. 5(1), 85–91. DOI: 10.1166/jbmb.2011.1125.10.1166/jbmb.2011.1125Search in Google Scholar

6. Boz, N., Degirmenbasi, N. & Kalyon, D. (2015). Esterification and Transesterification of Waste Cooking Oil over Amberlyst 15 and Modified Amberlyst 15 Catalysts. Appl. Catal. B-Environ. 165(14), 723–730. DOI: 10.1016/j.apcatb.2014.10.079.10.1016/j.apcatb.2014.10.079Search in Google Scholar

7. Kulkarni, M.G., Gopinath, R., Meher, L.C. & Dalai, A.K. (2006). Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem. 8(12), 1056–1062. DOI: 10.1039/B605713F.10.1039/b605713fSearch in Google Scholar

8. Rao, K.N., Sridhar, A., Lee, A.F., Tavener, S.J., Young, N.A. & Wilson, K. (2006). Zirconium phosphate supported tungsten oxide solid acid catalysts for the esterification of palmitic acid. Green Chem. 8(9), 790–797. DOI: 10.1039/B606088A.10.1039/b606088aSearch in Google Scholar

9. Yan, S., Maggio, C.D., Mohan, S., Kim, M., Salley, S.O. & Simon, Ng K.Y. (2010). Advancements in Heterogeneous Catalysis for Biodiesel Synthesis. Top Catal. 53(11–12), 721–736. DOI: 10.1007/s11244-010-9460-5.10.1007/s11244-010-9460-5Search in Google Scholar

10. Gupta, P. & Paul, S. (2014). Solid acids: Green alternatives for acid catalysis. Catal. Today. 116(2), 153–170. DOI: 10.1016/j.cattod.2014.04.010.10.1016/j.cattod.2014.04.010Search in Google Scholar

11. Mo, X.H., Lotero, E., Lu, C.Q., Liu, Y.L. & Goodwin, J.G. (2008). A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis. Catal. Lett. 123(1–2), 1–6. DOI: 10.1007/s10562-008-9456-y.10.1007/s10562-008-9456-ySearch in Google Scholar

12. Sania, Y., Dauda, W. & Aziza, A. (2014). Solid acids: Green alternatives for acid catalysis. Appl. Catal. A-Gen. 470(9), 140–161. DOI: 10.1016/j.apcata.2013.10.052.10.1016/j.apcata.2013.10.052Search in Google Scholar

13. Devi, B.L.A.P., Gangadhar, K.N., Prasad, P.S.S., Jagannadh, B. & Prasad, R.B.N. (2009). A Glycerol-based Carbon Catalyst for the Preparation of Biodiesel. Chem. Sus. Chem. 2(7), 617–620. DOI: 10.1002/cssc.200900097.10.1002/cssc.200900097Search in Google Scholar

14. Shu, Q., Zhang, Q., Xu, G.H., Nawaz, Z., Wang, D.Z. & Wang, J.F. (2009). Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process Technol. 90, 1002–1008. DOI: 10.1016/j.fuproc.2009.03.007.10.1016/j.fuproc.2009.03.007Search in Google Scholar

15. Sricharoenchaikul, V., Pechyen, C. & Aton, D. (2008). Preparation and Characterization of Activated Carbon from the Pyrolysis of Physic Nut (Jatropha curcas L.) Waste. Energ. Fuel. 22(1), 31–37. DOI: 10.1021/ef700285u.10.1021/ef700285uSearch in Google Scholar

16. Suárez-García, F., Martínez-Alonso, A. & Tascón, J.M.D. (2001). Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp. Carbon. 39(7), 1111–1115. DOI: 10.1016/S0008-6223(01)00053-7.10.1016/S0008-6223(01)00053-7Search in Google Scholar

17. Hara, M. (2010). Biodiesel Production by Amorphous Carbon Bearing SO3H, COOH and Phenolic OH Groups, a Solid Brønsted Acid Catalyst. Top Catal. 53(11–12), 805–810. DOI: 10.1007/s11244-010-9458-z.10.1007/s11244-010-9458-zSearch in Google Scholar

18. Samart, C., Karnjanakom, S., Chaiya, C., Reubroycharoen, P., Sawangkeawd, R. & Charoenpaniche, M. (2015). Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arab. J. Chem. In Press. DOI: 10.1016/j.arabjc.2014.12.034.10.1016/j.arabjc.2014.12.034Search in Google Scholar

19. Li, X.T., Jiang, Y.J., Shuai, L., Wang, L.L., Meng, L.Q. & Mu, X.D. (2012). Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem. 22(1), 1283–1289. DOI: 10.1039/C1JM12954F.10.1039/C1JM12954FSearch in Google Scholar

20. Nakajima, K., Hara, M. & Hayashi, S. (2007). Environmentally Benign Production of Chemicals and Energy Using a Carbon-Based Strong Solid Acid. J. Am. Ceram Soc. 90(12), 3725–3734. DOI: 10.1111/j.1551-2916.2007.02082.x.10.1111/j.1551-2916.2007.02082.xSearch in Google Scholar

21. Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S. & Hara, M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci. 12(6), 1029–1034. DOI: 10.1016/j.solidstatesciences.2010.02.038.10.1016/j.solidstatesciences.2010.02.038Search in Google Scholar

22. Vitaliy, E., Alexander, N., Liudmyla, M., Andrii, V. & Vladyslav, V. (2012). Efficient carbon-based acid catalysts for the propan-2-ol dehydration. Catal. Commun. 27(5), 33–37. DOI: 10.1016/j.catcom.2012.06.018.10.1016/j.catcom.2012.06.018Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering