Cite

1. Hamawand, I. (2011). Effect of Colloidal Particles associated with the Liquid Bridge in Sticking during Drying in Superheated Steam. Inter. J. Engineer. 24(2), 119–126.Search in Google Scholar

2. Bhandari, B. & Howes, T. (2005). Relating the stickiness property of food undergoing drying and dried products to their surface energy. Drying Technol. 23, 781–797. DOI: 10.1081/DRT-200054194.10.1081/DRT-200054194Search in Google Scholar

3. Mazzone, D.N., Tardos, G.I. & Pfeffer, R. (1987). The behaviour of liquid bridges between two relatively moving particles. Powder Technol.. 51, 71–83. DOI: 10.1016/0032-5910(87)80041-4.10.1016/0032-5910(87)80041-4Search in Google Scholar

4. Adhikari, B., Howes, T., Bhandari, B.R. & Truong V. (2001). Stickiness in foods: A review of mechanisms and test methods. Inter. J. Food Proper. 4 (1), 1–33. DOI: 10.1081/JFP-100002186.10.1081/JFP-100002186Search in Google Scholar

5. Mu, Fusheng & Su Xubin. (2007). Analysis of liquid bridge between spherical particles. China Particuology 5, 420–424. DOI: 10.1016/j.cpart.2007.04.006.10.1016/j.cpart.2007.04.006Search in Google Scholar

6. Font, R., Gomez-Rico, M.F. & Fullana, A. (2011). Skin effect in the heat and mass transfer model for sewage sludge drying. Sep. Puri. Technol. 77, 146–161. DOI: 10.1016/j.seppur.2010.12.001.10.1016/j.seppur.2010.12.001Search in Google Scholar

7. Bennamoun, L., Arlabosse, P. & Léonard, A. (2013). Review on fundamental aspect of application of drying process to waste water sludge. Renewable and Sustainable Energy Rev. 28, 29–43. DOI: 10.1016/j.rser.2013.07.043.10.1016/j.rser.2013.07.043Search in Google Scholar

8. Pajak, T. (2013). Thermal Treatment as Sustainable Sewage Sludge Management. Environ. Protect. Engineer. 39(2), 41–53. DOI: 10.5277/EPE130205.Search in Google Scholar

9. Mathioudakis, V.L., Kapagiannidis, A.G., Athanasoulia, E., Paltzoglou, A.D., Melidis, P. & Aivasidis, A. (2013). Sewage Sludge Solar Drying: Experiences from the First Pilot-Scale Application in Greece. Drying Technology: An Inter. J. 31(5), 519–526. DOI: 10.1080/07373937.2012.744998.10.1080/07373937.2012.744998Search in Google Scholar

10. Li, Y., Wang, H., Zhang, J., Wang, J. & Lan, O. (2013). Co-Processing Sewage Sludge in Cement Kiln in China. J. Water Res. Protect. 5, 906–910. DOI: 10.4236/jwarp.2013.59093.10.4236/jwarp.2013.59093Search in Google Scholar

11. Hamawand, I. & Yusaf, T. (2014). Modelling the Particle Motion in a Cascading Rotary Drum Dryer. Canadian J. Chem. Engineer. 92(4), 648–662. DOI: 10.1002/cjce.21845.10.1002/cjce.21845Search in Google Scholar

12. Wardjiman, C., Lee, A., Shehan, M.E. & Rhodes, M. (2008). Behaviour of a curtain of particles falling through a horizontally-flowing gas stream. Powder Technol. 188(2), 110–118. DOI: 10.1016/j.powtec.2008.04.002.10.1016/j.powtec.2008.04.002Search in Google Scholar

13. Pronyk, C., Cenkowski, S. & Muir, W.E. Drying foodstuff with superheated steam. Drying Technol. 22(5), 899–916. DOI: 10.1081/DRT-120038571.10.1081/DRT-120038571Search in Google Scholar

14. Van Deventer, H.C. & Heijmans, R.M.H. (2001). Drying with superheated steam. Drying Technol. 19(8), 2033–2045. DOI: 10.1081/DRT-100107287.10.1081/DRT-100107287Search in Google Scholar

15. Soponronnarit, S., Nathakaranakule, A., Jirajindalert, A. & Taechapairoj, C. (2006). Parboiling brown rice using superheated steam fluidization technique. J. Food Engineer. 75, 423–432. DOI: 10.1016/j.jfoodeng.2005.04.058.10.1016/j.jfoodeng.2005.04.058Search in Google Scholar

16. Soponronnarit, S., Prachayawarakorn, S., Rordprat, W., Nathakaranakule, A. & Tia, W. (2006). A superheated steam fluidized bed dryer for Parboiled Rice: testing of pilot-scale and mathematical Model Development. Drying Technol. 24(11), 1457–1467. DOI: 10.1080/07373930600952800.10.1080/07373930600952800Search in Google Scholar

17. Beeby, C. (1984). Drying in Superheated steam-fluidized bed. Unpublished doctoral dissertation, University of Monash, Melbourne, Australia.Search in Google Scholar

18. Trommelen, A.M. & Crosby, E.J. (1969). Evaporation and drying of drops in superheated vapours. AIChE Journal. 16 (5), 857–867. DOI: 10.1002/aic.690160527.10.1002/aic.690160527Search in Google Scholar

19. Tang, Z. & Cenkowski, S. (2000). Dehydration dynamics of potatoes in superheated steam and hot air. Can. Agric. Engineer. 42(1).Search in Google Scholar

20. Elustondo, D., Elustondo, M.P. & Urbicain, M.J. (2001). Mathematical modelling of moisture evaporation from foodstuffs exposed to subatmospheric pressure superheated steam. J. Food Engineer. 49(1), 15–24. DOI: 10.1016/S0260-8774(00)00180-1.10.1016/S0260-8774(00)00180-1Search in Google Scholar

21. Pakowiski, Z., Krupinka, B. & Adamski, R. (2007). Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow salix viminalis in wide temperature range. Fuel 86(12–13), 1749–1757. DOI: 10.1016/j.fuel.2007.01.016.10.1016/j.fuel.2007.01.016Search in Google Scholar

22. Hamawand, I. Yusaf, T. & Bennett, J. (2014). Study and Modelling Drying of Banana Slices under Superheated Steam. Asia Pacific J. Chem. Engineer. 9(4), 591–603. DOI: 10.1002/apj.1788.10.1002/apj.1788Search in Google Scholar

23. da Silva, W.P., Hamawand, I. & E. Silva C.M.D.P.S. (2014). A liquid diffusion model to describe drying of whole bananas using boundary-fitted coordinates. J. Food Engineer. 137, 32–38. DOI: 10.1016/j.jfoodeng.2014.03.029.10.1016/j.jfoodeng.2014.03.029Search in Google Scholar

24. Wimmerstedt, R. & Hager, J. (1996). Steam drying – modelling and applications. Drying Technol. 14(5), 1099–1119. DOI: 10.1080/07373939608917141.10.1080/07373939608917141Search in Google Scholar

25. Hong, S., Ryu, C., Ko, H.S., Ohm, T.I. & Chae, J.S. (2013). Process consideration of fry-drying combined with steam compression for efficient fuel production from sewage sludge. Appl. Energy 103, 468–476. DOI: 10.1016/j.apenergy.2012.10.002.10.1016/j.apenergy.2012.10.002Search in Google Scholar

26. Iyota, H., Nishimura, N., Yoshida, M. & Nomura, T. (2001). Simulation of superheated steam drying considering initial steam condensation. Drying Technol. 19(7), 1425–1440. DOI: 10.1081/DRT-100105298.10.1081/DRT-100105298Search in Google Scholar

27. Hakli, O., Dumanli, A.G., Nalbant, A., Okyay, F. & Yürüm, Y. (2010). The Conversion of Low-rank Kilyos Coal to Nitrogeneous. Energy Sources, Part A: Recovery, Utilization, and Environm. Effects 33(2), 164–170. DOI: 10.1080/15567030902937242.10.1080/15567030902937242Search in Google Scholar

28. Bergins, C. & Strauss, K. (2007). Advanced processes for low rank coal drying and dewatering in high efficient power plants. Inter. J. Global Energy Issues 28(2/3), 241–263. DOI: 10.1504/IJGEI.2007.015878.10.1504/IJGEI.2007.015878Search in Google Scholar

29. Pinches Industry Pty Ltd. (2014). Retrieved October 10, 2014, from http://www.pinches.com.au/Search in Google Scholar

30. Hamawand, I. (2013). Drying Steps under Superheated Steam: A Review and Modelling. J. Energy Environ. Res. 3(2), 107–125. DOI: 10.5539/eer.v3n2p107.10.5539/eer.v3n2p107Search in Google Scholar

31. Weber, S., Briensy, C., Berrutiz, B., Chan, E.W. & Gray, M.R. (2007, May). Agglomerate Behaviour in Fluidized Beds. Refereed Proceedings The 12th International Conference on Fluidization – New Horizons in Fluidization Engineering. Retrieved April 20, 2015, from http://dc.engconfintl.org/fluidization_xii/103/Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering