Open Access

Pyrolysis characteristics and kinetics of β-cyclodextrin and its two derivatives


Cite

1. Stalina, T., Srinivasan, K., Sivakumar, K. & Radhakrishnan, S. (2014). Preparation and characterizations of solid/aqueous phases inclusioncomplex of 2,4-dinitroaniline with β-cyclodextrin. Carbohyd. Polym. 107, 72–84. DOI: 10.1016/j.carbpol.2014.01.091.10.1016/j.carbpol.2014.01.091Search in Google Scholar

2. Periasamy, R., Kothainayaki, S., Rajamohan, R. & Sivakumar, K. (2014). Spectral investigation and characterization of host–guest inclusioncomplex of 4,4′-methylene-bis(2-chloroaniline) with beta-cyclodextrin. Carbohyd. Polym. 114, 558–566. DOI: 10.1016/j.carbpol.2014.08.006.10.1016/j.carbpol.2014.08.006Search in Google Scholar

3. Matsuo, M., Shraishi, K., Wada, K., Ishitsuka, Y., Doi, H., Maeda, M., Mizoguchi, T., Eto, J., Mochinaga, S., Arima, H. & Irie, T. (2014). Effects of intracerebroventricular administration of 2-hydroxypropyl-β-cyclodextrin in a patient with Niemann–Pick Type C disease. Mol. Genet. Metab. Rep., 1, 391–400. DOI: 10.1016/j.ymgmr.2014.08.004.10.1016/j.ymgmr.2014.08.004Search in Google Scholar

4. Santos, E.H., Kamimura, J.A., Hill, L.E. & Gomes, C.L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT – Food Sci. Technol. 60, 583–592. DOI: 10.1016/j.lwt.2014.08.046.10.1016/j.lwt.2014.08.046Search in Google Scholar

5. Szwajca, A. & Koroniak, H. (2014). Encapsulation of fluoroaromatics by β-cyclodextrin and their derivatives theoretical studies. J. Fluorine Chem. 167, 122–127. DOI: 10.1016/j.jfluchem.2014.07.016.10.1016/j.jfluchem.2014.07.016Search in Google Scholar

6. Fernandes, A., Ivanova, G., Brás, N.F., Mateus, N., Ramos, M.J., Rangel, M. & Freitas, V. de. (2014). Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β–cyclodextrin. Carbohyd. Polym. 102, 269–277. DOI: 10.1016/j.carbpol.2013.11.037.10.1016/j.carbpol.2013.11.037Search in Google Scholar

7. Gomes, L.M.M., Petito, N., Costa, V.G., Falcão, D.Q. & Araújo, K.G. de L. (2014). Inclusion complexes of red bell pepper pigments with β-cyclodextrin: Preparation, characterisation and application as natural colorant in Yogurt. Food Chem.148, 428–436. DOI: 10.1016/j.foodchem.2012.09.065.10.1016/j.foodchem.2012.09.065Search in Google Scholar

8. Yuan, C., Lu, Z. & Jin Z. (2014). Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem.152, 140–145. DOI: 10.1016/j.foodchem.2013.11.139.10.1016/j.foodchem.2013.11.139Search in Google Scholar

9. Martínez, I.M.A., Oca, M.N.M. de., Iriarte, A.G., Ortiz, C.S. & Argüell, G.A. (2011). Study on the interaction of Basic Violet 2 with hydroxypropyl-b-cyclodextrin. Dyes Pigments 92, 758–765. DOI: 10.1016/j.dyepig.2011.06.027.10.1016/j.dyepig.2011.06.027Search in Google Scholar

10. Hsu, C.M., Tsai, F.J. & Tsa, Y. (2014). Inhibitory effect of Angelica sinensis extract in the presence of 2-hydroxypropyl-β-cyclodextrin. Carbohyd. Polym.114, 115–122. DOI: 10.1016/j.carbpol.2014.07.042.10.1016/j.carbpol.2014.07.042Search in Google Scholar

11. Ol’khovich, M.V., Sharapova, A.V., Lavrenov, S.N., Blokhina, S.V. & Perlovich, G.L. (2014). Inclusion complexes of hydroxypropyl-β-cyclodextrin with novel cytotoxic compounds: Solubility and thermodynamic properties. Fluid Phase Equilibr. 384, 68–72. DOI: 10.1016/j.fluid.2014.10.030.10.1016/j.fluid.2014.10.030Search in Google Scholar

12. Yao, Q., You, B., Zhou, S., Chen, M., Wang, Y. & Li, W. (2014). Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: A combined spectroscopy, TG/DSC and DFT study. Spectrochim. Acta Part A. 117, 576–586. DOI: 10.1016/j.saa.2013.09.036.10.1016/j.saa.2013.09.036Search in Google Scholar

13. Zhu, G., Xiao, Z., Zhou, R. & Zhu, Y. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohyd. Polym. 105, 75–80. DOI: 10.1016/j.carbpol.2014.01.060.10.1016/j.carbpol.2014.01.060Search in Google Scholar

14. Zhu, G., Xiao, Z., Zhou, R. & Feng, N. (2014). Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule. J. Food Sci. Tech. DOI: 10.1007/s13197-014-1465-9.10.1007/s13197-014-1465-9Search in Google Scholar

15. Zhu, G., Zhu, X., Xiao, Z. & Yi, F. (2012). Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer. J. Anal. Appl. Pyrol. 94, 126-130. DOI: 10.1016/j.jaap.2011.11.016.10.1016/j.jaap.2011.11.016Search in Google Scholar

16. Zhu, G., Zhu, X., Xiao, Z., Zhou, R. & Yi, F. (2012). Pyrolysis characteristics of bean dregs and in situ visualization of pyrolysis transformation. Waste Manage. 32, 2287–2293. DOI: 10.1016/j.wasman.2012.07.004.10.1016/j.wasman.2012.07.004Search in Google Scholar

17. Demir, F., Dönmez, B., Okur, H. & Sevim, E. (2003). Calcination kinetic of magnesite from thermogravimetric data. Chem. Eng. Res. Des. 81, 618–622. DOI: 10.1205/026387603322150462.10.1205/026387603322150462Search in Google Scholar

18. Sevim, F., Demir, F., Bilen, M. & Okur, H. (2006). Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J. Chem. Eng. 23, 736–740. DOI: 10.1007/BF02705920.10.1007/BF02705920Search in Google Scholar

19. Coats, A.W., & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature 201, 68–69.10.1038/201068a0Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering