Cite

1. Gąsiorek, E. & Wilk, M. (2011). Possibilities of utilizing the solid by-products of biodiesel production – a review. Pol. J. Chem. Technol. 13(1), 58–62. DOI: 10.2478/v10026-011-0012-y.10.2478/v10026-011-0012-ySearch in Google Scholar

2. Szlachta, J. (2008, sierpień). Możliwości wykorzystania odnawialnych źródeł energii na Dolnym Śląsku. Cieplej pl.-Portal Dolnośląskiej Agencji Energii i Środowiska. Źródło styczeń 17, 2014, z http://www.cieplej.pl/index_artykuly.php5?dzial=2&kat=23&art=23&limit=12Search in Google Scholar

3. Giampietro, M. & Ulgiati, S. (2005). Integrated assessment of large-scale biofuel production. Crit. Rev. Plant Sci. 24, 365–384. DOI:10.1080/07352680500316300.10.1080/07352680500316300Search in Google Scholar

4. Kotowski, W. (2004, kwiecień). Ze 150 mld wykorzystuje się zaledwie 5 mld ton… Biomasa na marginesie. Źródło styczeń 17, 2014, z http://www.gigawat.net.pl/archiwum/article/articleview/330/1/37/index.htmlSearch in Google Scholar

5. Glithero, N.J., Ramsden, S.J. & Wilson, P. (2013). Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective. Energy Policy 59, 161–171. DOI: 10.1016/j.enpol.2013.03.003.10.1016/j.enpol.2013.03.003404810524926116Search in Google Scholar

6. Kogut, P., Kaczmarek, F., Dąbrowski, T. & Piekarski, J. (2012). Biogas Production Plants as a Method of Utilisation of Sewage Sludge in Relation to the Polish Legislation. Rocznik Ochrona Środowiska. Annual Set The Environment Protection 14, 299–313.Search in Google Scholar

7. Nguyen, T.L.T., Hermansen, J.E. & Nielsen, R.G. (2013). Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: the case of wheat straw. J. Clean. Product. 53, 138–148. DOI: 10.1016/j.jclepro.2013.04.004.10.1016/j.jclepro.2013.04.004Search in Google Scholar

8. Hardy, T., Musialik-Piotrowska, A., Ciołek, J., Mościcki, K. & Kordylewski, W. (2012). Negative effects of biomass combustion and co-combustion in boilers. Environ. Protect. Engin. 38(1), 25–33.Search in Google Scholar

9. Wang, L., Littlewood, J. & Murphy, R.J. (2013). Environmental sustainability of bioethanol production from wheat straw in the UK. Renewable and Sustainable Energy Rev. 28, 715–725. DOI: 10.1016/j.rser.2013.08.031.10.1016/j.rser.2013.08.031Search in Google Scholar

10. Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P. & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technol. 9(100), 2562–2568. DOI:10.1016/j.biortech.2008.11.011.10.1016/j.biortech.2008.11.01119135361Search in Google Scholar

11. Grzybek, A., Gradziuk, P. & Kowalczyk, K. (2001). Słoma – energetyczne paliwo. Wieś Jutra. 15. ISBN: 83-88368-19-2.Search in Google Scholar

12. Talebnia, F., Karakashev, D. & Angelidaki I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technol. 13, 101, 4744–4753. DOI: 10.1016/j.biortech.2009.11.080.10.1016/j.biortech.2009.11.08020031394Search in Google Scholar

13. Passoth, V., Tabassum, M.R., Nair, H.A.S., Olstorpe, M., Tiukova, I. & Ståhlberg J. (2013). Enhanced ethanol production from wheat straw by integrated storage and pretreatment (ISP). Enzyme and Microbial Technol. 2, 52, 105–110. DOI: 10.1016/j.enzmictec.2012.11.003.10.1016/j.enzmictec.2012.11.00323273279Search in Google Scholar

14. Zielonaenergia.eco.pl (2013, czerwiec). Sposoby energetycznego wykorzystania biomasy. Źródło grudzień 20, 2013, z http://www.zielonaenergia.Eco.pl/index.php?Search in Google Scholar

15. option=com_content&view=article&id=240:sposoby-energetycznego-wykorzystania-biomasy&catid=49:biomasa&Itemid=208Search in Google Scholar

16. Balat, M., Balat, H. & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Sci. 34, 551–573. DOI:10.1016/j.pecs.2007.11.001.10.1016/j.pecs.2007.11.001Search in Google Scholar

17. Baras, J., Gacesa, S. & Pejin, D. (2002). Ethanol is a strategic raw material. Chem. Ind., 56(3), 89–105. http://www.doiserbia.nb.rs/img/doi/0367-598X/2002/0367-598X0203089B.pdf10.2298/HEMIND0203089BSearch in Google Scholar

18. Seguin, A., Marinkovic, S. & Estrine, B. (2012). New pretreatment of wheat straw and bran in hexadecanol for the combined production of emulsifying base, glucose and lignin material. Carbohyd. Polym. 2, 88, 657–662. DOI:10.1016/j.carbpol.2012.01.018.10.1016/j.carbpol.2012.01.018Search in Google Scholar

19. Alinia, R., Zabihi, S., Esmaeilzadeh, F. & Kalajahi, J.F. (2010). Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering 1107, 61–66. DOI:10.1016/j.biosystemseng.Search in Google Scholar

20. Zabihi, S., Alinia, R., Esmaeilzadeh, F. & Kalajahi, J.F. (2010). Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 3, 105, 288–297. DOI:10.1016/j.biosystemseng.2009.11.007.10.1016/j.biosystemseng.2009.11.007Search in Google Scholar

21. Badger, P.C. (2002). Ethanol From Cellulose: A General Review Reprinted from: Trends in new crops and new uses. Janick, J. and Whipkey, A. (eds.). ASHS Press, Alexandria, VA. http://large.stanford.edu/publications/coal/references/docs/badger.pdfSearch in Google Scholar

22. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management 52, 858–875. DOI: 10.1016/j.enconman.2010.08.013.10.1016/j.enconman.2010.08.013Search in Google Scholar

23. Ferreira-Leitão, V., Gottschalk, L.M.F., Ferrara, M.A., Nepomuceno, A.L., Molinari, H.B.C. & Bon, E.P.S. (2010). Biomass Residues in Brazil: Availability and Potential Uses. Waste and Biomass Valorization 1(1), 65–76. DOI: 10.1007/s12649-010-9008-8.10.1007/s12649-010-9008-8Search in Google Scholar

24. Glithero, N.J., Wilson, P. & Ramsden, S.J. (2013). Straw use and availability for second generation biofuels in England. Biom. and Bioene. 55, 311–321, DOI:10.1016/j.biombioe.2013.02.033.10.1016/j.biombioe.2013.02.033446116027667905Search in Google Scholar

25. Borrion, A.L., McManus, M.C. & Hammond, G.P. (2012). Environmental life cycle assessment of bioethanol production from wheat straw. Biom. Bioene. 47, 9–19. DOI: 10.1016/j.biombioe.2012.10.017.10.1016/j.biombioe.2012.10.017Search in Google Scholar

26. Directive 2009/28/EC of the European Parliament and of the Council. (2009) on the promotion of the use of energy from renewable sources. OJ l140 of 5.6.2009.Search in Google Scholar

27. Londo, M., et al. (2010). The REFUEL EU road map for biofuels in transport: Application of the project’s tools to some short-term policy issues. Biom. Bioener. 34 (2), 244–250. DOI: 10.1016/j.biombioe.2009.07.005.10.1016/j.biombioe.2009.07.005Search in Google Scholar

28. Borowski, P., Gawron, J., Golisz, E., Kupczyk, A., Piechocki, J., Powałka, M., Redlarski, G., Samson-Bręk, I., Sikora, M., Szwarc, M. & Tucki, K. (2014). Influence of CO2 emissions reduction on functioning the biofuels sectors for transport in Poland (in Polish: Wpływ redukcji emisji CO2 na funkcjonowanie sektorów biopaliw transportowych w Polsce. Oficyna Wydawniczo-Poligraficzna ADAM, Warszawa (ISBN 978-83-7821-084-9).Search in Google Scholar

29. Gmyrek, R. (2014). Private communication and http://www.novozymes.com/en/news/image/Pages/Crescentino-Grand-Opening.aspxSearch in Google Scholar

30. Tokarz, J. (2002). Szanse rozwoju energetyki odnawialnej. Czysta Energia 10(14). 16–18.Search in Google Scholar

31. Duda, M. (2011, listopad). Potencjał i wykorzystanie biomasy w Polsce. Źródło kwiecień 30, 2014, z http://eas.itc.pw.edu.pl/?p=139Search in Google Scholar

32. Larsen, S.U., Bruun, S. & Lindedam, J. (2012). Straw yield and saccharification potential for ethanol in cereal species and wheat cultivars. Biom. Bioener. 45, 239–250. DOI: 10.1016/j.biombioe.2012.06.012.10.1016/j.biombioe.2012.06.012Search in Google Scholar

33. Chen, H., Han, Y. & Xu, J. (2008). Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, 12(43), 1462–1466. DOI: 10.1016/j.procbio.2008.07.003.10.1016/j.procbio.2008.07.003Search in Google Scholar

34. Chen, H. & Jin, S. (2006). Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme Microb. Technol., 39, 1430–1432. DOI: 10.1016/j.enzmictec.2006.03.027.10.1016/j.enzmictec.2006.03.027Search in Google Scholar

35. Hill, J. (2007). Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops. A review. Agron. Sustainable Development 27, 1–12. DOI:10.1051/agro:2007006.10.1051/agro:2007006Search in Google Scholar

36. Luo, L., van der Voet, E. & Huppes, G. (2009). An energy analysis of ethanol from cellulosic feedstock – Corn stover. Renewable and Sustainable Energy Reviews, 13, 2003–2011. DOI: 10.1016/j.rser.2009.01.016.10.1016/j.rser.2009.01.016Search in Google Scholar

37. Zhu, S., Yu, P., Lei, M., Tong, Y., Zheng, L., Zhang, R., Ji, J., Chen, Q. & Wu, Y. (2013). Investigation of the toxicity of the ionic liquid 1-butyl-3-methylimidazolium chloride to Saccharomyces cerevisiae AY93161 for lignocellulosic ethanol production. Pol. J. Chem. Technol. 15, 2, 94–98. DOI: 10.2478/pjct-2013-0029.10.2478/pjct-2013-0029Search in Google Scholar

38. Krutul, D. (2002). Ćwiczenia z chemii drewna oraz wybranych zagadnień z chemii organicznej (Wyd. 2). Wydaw. SGGW Polska. (in Polish)Search in Google Scholar

39. Rodrigues, J., Faix, O. & Pereira, H. (1999). Improvement of the acethylbromide method for lignin determination within large scale screening programmes. European Journal of Wood & Wood Products/Holz als Roh- und Werkstoff 57, 341–345. DOI:10.1007/s001070050355.10.1007/s001070050355Search in Google Scholar

40. Ghose, T.K. (1987). Measurement of cellulases activities. Pure Appl. Chem. 59 (2), 257–268. DOI:10.1351/pac198759020257.10.1351/pac198759020257Search in Google Scholar

41. BOEHRINGER MANNHEIM/R-BIOPHARM, Ethanol UV-method, Simplified procedure for the determination of ethanol in alcoholic beverages, http://www.hottay.ru/Files/ethanol_englisch_10176290035.pdfSearch in Google Scholar

42. Saha, B.C., Iten, L.B., Cotta, M.A. & Wu, Y.V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem.12, 40, 3693–3700. DOI: 10.1016/j.procbio.2005.04.006.10.1016/j.procbio.2005.04.006Search in Google Scholar

43. Zhang, M., Eddy, C., Deana, K., Finkestein, M. & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic. Zymomonas mobilis. Sci.267(5195), 240–243. DOI: 10.1126/science.267.5195.240.10.1126/science.267.5195.24017791346Search in Google Scholar

44. Ruiz, H.A., Ruzene, D.S., Silva, D.P., Silva, F.F.M., Vicente, A.A. & Teixeira, J.A. (2011). Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl. Biochem. Biotech. 5, 164, 629–641. DOI: 10.1007/s12010-011-9163-9.10.1007/s12010-011-9163-921274658Search in Google Scholar

45. Miettinen-Oinonen, A. (2004). Trichoderma reesei strains for production of cellulases for the textile industry. VTT Publications 550, Helsinki, 3–4. ISBN 951.38.6417.0.Search in Google Scholar

46. Schuster, E., Dunn-Coleman, N., Frisvad, JC. & Van Dijck, P.W. (2002). On the safety of Aspergilus niger – a review. Appl. Microbiol. Biotechnol. 59(4–5), 426–35. DOI: 10.1007/s00253-002-1032-6.10.1007/s00253-002-1032-612172605Search in Google Scholar

47. Kłosowski, G., Macko, D. & Mikulski, D. (2010). Rozwój metod biotechnologicznych produkcji biopaliw ze źródeł odnawialnych. Ochr. Śr. Zasobów Nat. 45, 120–132. (in Polish).Search in Google Scholar

48. Saha, C.B. & Cotta, M.A. (2007). Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol. J. Chem. Technol. & Biotechnology 82, 913–919. DOI: 10.1002/jctb.1760.10.1002/jctb.1760Search in Google Scholar

49. Szczodrak, J. (1988). The Enzymatic hydrolysis and fermentation of pretreated wheat straw to ethanol. Biotech. Bioeng. 32(6), 771–776. DOI:10.1002/bit.260320608.10.1002/bit.260320608Search in Google Scholar

50. Han, L., Feng, J., Zhang, S., Ma, Z., Wang, Y. & Zhang, X. (2012). Alkali pretreated of wheat straw and it’s enzymatic hydrolysis. Brazil. J. Microbiol. 43, 53–61. DOI: 10.1590/S1517-83822012000100006.10.1590/S1517-83822012000100006Search in Google Scholar

51. Silva, G.G.D., Couturier, M., Berrin, J-G., Buléon, A. & Rouau, X. (2012). Effects of grinding processes on enzymatic degradation of wheat straw. Biores. Technol. 1, 103, 192–200. DOI: 10.1016/j.biortech.2011.09.073.10.1016/j.biortech.2011.09.073Search in Google Scholar

52. Laureano-Perez, L., Teymouri, F., Alizadeh, H. & Dale, B. (2005). Understanding factors that limit enzymatic hydrolysis of biomass. Characterization of pretreated corn stover. Appl. Bioch. Biotech. 124(1–3), 1081–1099. DOI: 10.1385/ABAB:124:1-3:1081.10.1385/ABAB:124:1-3:1081Search in Google Scholar

53. Detroy, R.W., Lindenfelser, L.A. & Sommer, S. (1981). Bioconversion of wheat straw to ethanol: chemical modification, enzymatic hydrolysis, and fermentation, biotechnology and bioengineering. Biotech. Bioeng. 23, 1527–1535. DOI: 10.1002/bit.260230712.10.1002/bit.260230712Search in Google Scholar

54. Wenzel, H.J.F. (1970). The chemical technology of Wood. Academic Press 2nd edition, New York, USA, CH4. 94–101 and, 157–571.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering