Cite

1. Schlesinger, M.E., King, M.J. & Sole, K.C. & Davenport W.G. (2011). Extractive Metallurgy of Copper (5th ed.). Oxford, UK: Elsevier.Search in Google Scholar

2. Fernandez-Caliani, J.C., Rios, G., Martinez, J. & Jimenez, F.J. (2012). Occurrence and speciation of copper in slags obtained during the pyrometallurgical processing of chalcopyrite concentrates at the Huelva smelter (Spain). J. Min. Metall., Sect. B, 48(2), 161–171. DOI: 10.2298/jmmb111111027f.10.2298/JMMB111111027FSearch in Google Scholar

3. Sarrafi, A., Rahmati, B., Hassani, H.R. & Shirazi, H.H.A. (2004). Recovery of copper from reverberatory furnace slag by flotation. Miner. Eng., 17, 457–459. DOI: 10.1016/j.mineng.2003.10.018.10.1016/j.mineng.2003.10.018Search in Google Scholar

4. Moskalyk, R.R. & Alfantazi, A.M. (2003). Review of copper pyrometallurgical practice: today and tomorrow. Miner. Eng., 16, 893–919. DOI: 10.1016/j.mineng.2003.08.002.10.1016/j.mineng.2003.08.002Search in Google Scholar

5. Shi, C., Meyer, C. & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resour., Conserv. Recycl., 52, 11151120. DOI: 10.1016/j.resconrec.2008.06.008.10.1016/j.resconrec.2008.06.008Search in Google Scholar

6. Gorai, B., Jana, R.K. & Premchand, P. (2003). Characteristics and utilisation of copper slag – a review. Resour., Conserv. Recycl., 39, 299–313. DOI: 10.1016/S0921-3449(02)00171-4.10.1016/S0921-3449(02)00171-4Search in Google Scholar

7. Jalkanen, H., Vehviläinen, J. & Poijärvi, J. (2003). Copper in solidified copper smelter slags. Scand. J. Metall., 32, 65–70. DOI: 10.1034/j.1600-0692.2003.00536.x.10.1034/j.1600-0692.2003.00536.xSearch in Google Scholar

8. Zivkovic, Z., Mitevska, N., Mihajlovic, I. & Nikolic, Dj. (2010). Copper losses in sulfide concentrate smelting slag are dependent on slag composition. Miner. Metall. Process., 27, 141–147.Search in Google Scholar

9. Acuna, C. & Sherrington, M. (2005). Slag cleaning processes: A growing concern. Mater. Sci. Forum., 475, 2745–2752. DOI: 10.4028/www.scientific.net/MSF.475-479.2745.10.4028/www.scientific.net/MSF.475-479.2745Search in Google Scholar

10. Živković, Ž., Mitevska, N., Mihajlović, I. & Nikolić, Đ. (2009). The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates. J. Min. Metall., Sect. B, 45, 23–34. DOI: 10.2298/JMMB0901023Z.10.2298/JMMB0901023ZSearch in Google Scholar

11. Goni, C. & Sanchez, M. (2009). Modeling of copper content variation during „El Teniente“ slag cleaning process. VIII International Conference on Molten Slags, Fluxes & Salts. Santiago, Chile, 123–131.Search in Google Scholar

12. Djordjevic, P., Mitevska, N., Mihajlovic, I., Nikolić, Dj., Manasijevic, D. & Zivkovic, Z. (2012). The effect of copper content in the matte on the distribution coefficients between the slag and the matte for certain elements in the sulphide copper concentrate smelting process. J. Min. Metall., Sect. B, 48, 143–151. DOI: 10.2298/JMMB111115012D.10.2298/JMMB111115012DSearch in Google Scholar

13. Djordjevic, P., Mitevska, N., Mihajlovic, I., Nikolic, Dj. & Zivkovic, Z. (2014). Effect of the slag basicity on the coefficient of distribution between copper matte and the slag for certain metals. Miner. Process. Extr. Metall. Rev., 35, 202–207. DOI: 10.1080/08827508.2012.738731.10.1080/08827508.2012.738731Search in Google Scholar

14. Mitevska, N., Živković, Ž. & Marinković, J. (2000). The influence of reverb slag composition on copper losses. J. Min. Metall., Sect. B, 36, 63–76.Search in Google Scholar

15. Sridhar, R., Toguri, J.M., Simeonov, S. (1997). Copper losses and thermodynamic considerations in copper smelting. Metall. Mater. Trans. B, 28, 191–200. DOI: 10.1007/s11663-997-0084-5.10.1007/s11663-997-0084-5Search in Google Scholar

16. Li u, J., Gui, W., Xie, Y. & Yang, C. (2014). Dynamic modeling of copper flash smelting process at a Smelter in China. Appl. Math. Model., 38(7–8), 2206–2213. DOI: http://dx.doi.org/10.1016/j.apm.2013.10.035.Search in Google Scholar

17. Liu, J., Gui, W., Xie, Y. & Jiang, Z. (2013). Solving the Transient Cost-Related Optimization Problem for Copper Flash Smelting Process with Legendre Pseudospectral Method. Mater. Trans., 54(3), 350–356. DO I: 10.2320/matertrans.M2012350.10.2320/matertrans.M2012350Search in Google Scholar

18. Živković, Ž., Mihajlović I. & Nikolić Đ. (2009). Artificial neural network method applied on the nonlinear multivariate problems. Serb. J. Manag., 4, 143–155.Search in Google Scholar

19. Živković, Ž., Mihajlović, I., Djurić, I. & Štrbac, N. (2010). Statistical modeling of the industrial sodium aluminate solutions decomposition process. Metall. Mater. Trans. B, 41, 1116–1122. DOI: 10.1007/s11663-010-9407-z.10.1007/s11663-010-9407-zSearch in Google Scholar

20. Kalina, J. (2014). On robust information extraction from high-dimensional data. Serb. J. Manag., 9(1), 131–144. DOI: 10.5937/sjm9-5520.10.5937/sjm9-5520Search in Google Scholar

21. Azlan Hussain, M. (1999). Review of the applications of neural networks in chemical control – simulation and online implementation. Artif. Intell. Eng., 13, 55–68. DOI: 1016/S0954-1810(98)00011-9.10.1016/S0954-1810(98)00011-9Search in Google Scholar

22. Bloch, G. & Denoeux, T. (2003). Neural networks for process control and optimization: two industrial applications. ISA Trans., 42, 39–51. DOI: 10.1016/S0019-0578(07)60112-8.10.1016/S0019-0578(07)60112-8Search in Google Scholar

23. Chehreh Chelgani, S. & Jorjani, E. (2009). Artificial neural network prediction of Al2O3 leaching recovery in the Bayer process – Jajarm alumina plant (Iran). Hydrometallurgy, 97, 105–110. DOI: 10.1016/j.hydromet.2009.01.008.10.1016/j.hydromet.2009.01.008Search in Google Scholar

24. Jang, J.S.R. (1993). ANFIS: Adaptive-network based fuzzy inference system. IEEE Trans. Syst., Man, Cybern., Syst., 23, 665–685. DOI: 10.1109/21.256541.10.1109/21.256541Search in Google Scholar

25. Savic, M., Mihajlovic I. & Zivkovic, Z. (2013). An ANFIS-based air quality model for prediction of SO2 concentration in urban area. Serb. J. Manag., 8, 25–38. DOI: 10.2139/ssrn.2257533.10.2139/ssrn.2257533Search in Google Scholar

26. Karami, A. & Afiuni-Zadeh, S. (2012). Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system and radial basis function. Int. J. Min. Sci. Technol., 22, 459–463. DOI: 10.1016/j.ijmst.2012.06.001.10.1016/j.ijmst.2012.06.001Search in Google Scholar

27. Han, Y., Zeng, W., Zhang, X., Zhao, Y., Sun, Y. & Ma, X. (2013). Modeling the relationship between hydrogen content and mechanical property of Ti600 alloy by using ANFIS. Appl. Math. Model., 37, 5705–5714. DOI: 10.1016/j.apm.2012.11.008.10.1016/j.apm.2012.11.008Search in Google Scholar

28. Fragiadakis, N.G., Tsoukalas, V.D. & Papazoglou, V.J. (2014). An adaptive neuro-fuzzy inference system (ANFIS) model for assesing occupational risk in the shipbuilding industry. Safety Sci., 63, 226–235. DOI: 1016/j.ssci.2013.11.013.10.1016/j.ssci.2013.11.013Search in Google Scholar

29. Mihajlović, I., Đurić, I. & Živković, Ž. (2014). ANFIS based prediction of the aluminum extraction from boehmite bauxite in the Bayer process. Pol. J. Chem. Tech., 16(1),103–109. DOI: 10.2478/pjct-2014-0018.10.2478/pjct-2014-0018Search in Google Scholar

30. Moroney, R.N. (1998). Spurious of virtual correlation errors commonly encountered in reduction of scientific data. J. Wind. Eng. Ind. Aerod., 77&78, 543–553.10.1016/S0167-6105(98)00171-8Search in Google Scholar

31. Demuth, H. & Beale, M. (2002). Neural Network Toolbox for Use with MATLAB, Handbook. The MathWorks Inc., Natick, MA.Search in Google Scholar

32. Jang, J.S.R., Sun, C.T. & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing – A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Cambridge, MA.10.1109/TAC.1997.633847Search in Google Scholar

33. Subashini, L. & Vasudeven M. (2012). Adaptive neuro-fuzzy inference system (ANFIS) – based models for predicting the weld bead width and depth of penetration from the infrared thermal image of the weld pool. Metall. Mater. Trans. B, 43, 145–154. DOI: 10.1007/s11663-011-9570-x.10.1007/s11663-011-9570-xSearch in Google Scholar

34. Takagi, T. & Sugeno, M. (1985). Fuzzy identification systems and its application to modeling and control. IEEE Trans. Syst., Man, Cybern., Syst., 15, 116–132. DOI: 10.1109/tsmc.1985.6313399.10.1109/TSMC.1985.6313399Search in Google Scholar

35. MATLAB, V.7.1 (2007). The MathWorks Inc., Natick, MA.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering