Open Access

Homogeneous catalytic systems for selective oxidation of methane: state of the art

   | Sep 19, 2015

Cite

1. Energy Information Administration, Natural Gas Reserves (2013), http://www.eia.gov/naturalgas/Search in Google Scholar

2. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of synthesis gas formation in methane reforming with carbon dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6Search in Google Scholar

3. Rynkowski, J.M., Paryjczak, T. & Lenik, M. (1993). On the nature of oxidic nickel phase in NiO/γ-Al2O3 catalysts. Appl Catal A. 106, 73. DOI: 10.1016/0926-860X(93)80156-K.10.1016/0926-860X(93)80156-KSearch in Google Scholar

4. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039Search in Google Scholar

5. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite, Nanotechnology 21, 145308. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/14530820234080Search in Google Scholar

6. Ziebro, J., Skorupińska, B., Kądziołka, G. & Michalkiewicz, B. (2013). Synthesizing multi-walled carbon nanotubes over supported-nickel catalyst. Fuller. Nanotub. Car. N. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.10.1080/1536383X.2011.613543Search in Google Scholar

7. Michalkiewicz, B. & Majewska, J. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-zSearch in Google Scholar

8. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 145308. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/145308Search in Google Scholar

9. Sen, A. & Lin, M. (2003). Catalytic partial oxidation of methane to methanol and formaldehyde, Am. Chem. Soc., 48, 2, 827. DOI: 10.1007/s11244-005-2888-3.10.1007/s11244-005-2888-3Search in Google Scholar

10. Dreisbach, F., Losch, H.W. & Harting, P. (2002). Highest pressure adsorption equilibrium data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume. Adsorption 8, 95. DOI: 10.1023/A:1020431616093.10.1023/A:1020431616093Search in Google Scholar

11. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses, Industrial Crops And Products 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.10.1016/j.indcrop.2013.03.004Search in Google Scholar

12. Azevedo, D.C.S., Cassia, J., Araujo, S., Bastos-Neto, M., Eurico, A., Torres, B. & Jaguaribe E.F. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater. Cavalcante C.L. 100, 361–364. DOI: 10.1016/j.micromeso.2006.11.024.10.1016/j.micromeso.2006.11.024Search in Google Scholar

13. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation, Pol. J. Chem. Tech. 13(4), 63–70. DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4Search in Google Scholar

14. Lin, M. & Sen, A. (1992). A highly catalytic system for the direct oxidation of lower alkanes by dioxygen in aqueous medium. A formal heterogeneous analog of alkane monooxygenases, J. Am. Chem. Soc. 114, 7307. DOI: 10.1021/ja00044a059.10.1021/ja00044a059Search in Google Scholar

15. Hammond, C., Forde, M.M, Rahim, M.H.A., Thetford, A., He, Q., Jenkins, R.L., Dimitratos, N. & Lopez-Sanchez, J.A. (2012). Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5, Chemistry – A European Journal 18, 49, 15735–15745. DOI: 10.1002/anie.201108706.10.1002/anie.201108706Search in Google Scholar

16. Gang, X., Birch, H., Zhu, Y., Hjuler, H.A., Bjerrum N. J. (2000). Direct Oxidation of Methane to Methanol by Mercuric Sulfate Catalyst, Journal of Catalysis, 196, 2, 287–292. DOI: 10.1006/jcat.2000.3051.10.1006/jcat.2000.3051Search in Google Scholar

17. Yamada, Y., Ueda, A., Shioyama, H. & Kobayashi, T. (2003). High – throughput experiments on methane partial oxidations using molecular oxygen over silica doped with various elements, Appl. Catal. A. 254, 45. DOI: 10.1016/S0926-860X(03)00262-X.10.1016/S0926-860X(03)00262-XSearch in Google Scholar

18. Otsuka, K. & Hatano, M. (1987). The catalysts for the synthesis of formaldehyde by partial oxidation of methane, J. Catal. 108, 252. DOI: 10.1016/0021-9517(87)90172-2.10.1016/0021-9517(87)90172-2Search in Google Scholar

19. Parmaliana, A., Frusteri, F., Mezzapica, A., Scurrel, M. S. & Giordano, N. (1993). Novel high activity catalyst for partial oxidation of methane to formaldehyde, J. Chem. Soc. Chem. Commun. 751. DOI: 10.1039/C39930000751.10.1039/c39930000751Search in Google Scholar

20. Weng, T. & Wolf, E.E. (1993). Partial oxidation of methane on mo/sn/p silica supported catalysts, Appl. Catal., 96, 383 DOI: 10.1016/0926-860X(90)80024-9.10.1016/0926-860X(90)80024-9Search in Google Scholar

21. Otsuka, K. & Wang, Y. (2001). Direct conversion of methane into oxygenates, Appl. Catal., 222, 145. DOI: 10.1016/S0926-860X(01)00837-7.10.1016/S0926-860X(01)00837-7Search in Google Scholar

22. Spencer, N.D. (1988). Partial oxidation of methane to formaldehyde by means of molecular oxygen, J. Catal., 109, 143. DOI: 10.1016/0021-9517(88)90197-2.10.1016/0021-9517(88)90197-2Search in Google Scholar

23. Otsuka, K., Komatsu, T., Jinno, K., Uragami, Y. & Morikawa, A. (1988). Proceedings of the 9th International Congress on Catalysis, The Chemical Institute of Canada, Ottawa, 915.Search in Google Scholar

24. Kastsnas, G.N., Tsigdios, G.A. & Schwank, J. (1988). Selective oxidation of methane over vycor glass, quartz glass and various silica, magnesia and alumina surfaces, Appl. Catal. A., 44, 33–51. DOI: 10.1016/S0166-9834(00)80043-3.10.1016/S0166-9834(00)80043-3Search in Google Scholar

25. Alptakin, G.O., Herring, A.M., Williamson, D.L., Ohno, T.R. & McCormick, R.L. (1999). Methane Partial Oxidation by Unsupported and Silica Supported Iron Phosphate Catalysts: Influence of Reaction Conditions and Co-Feeding of Water on Activity and Selectivity, J. Catal., 181, 104–112. DOI: 10.1006/jcat.1998.2297.10.1006/jcat.1998.2297Search in Google Scholar

26. Sinev. M.Y., Setiadi, S. & Otsuka, K. (1993). Selectivity Control by Oxygen Pressure in Methane Oxidation over Phosphate Catalysts, Mendeleev Commun., 10. DOI: 10.1016/S0167-2991(08)63427-8.10.1016/S0167-2991(08)63427-8Search in Google Scholar

27. Hargreaves, J.S.J., Hutchings, G.J. & Joyner, R.W. (1990). Control of product selectivity in the partial oxidation of Methane, Nature, 348, 428. DOI: 10.1038/348428a0.10.1038/348428a0Search in Google Scholar

28. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Chemical Papers, 62, 1, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4Search in Google Scholar

29. Kałucki, K. & Michalkiewicz, B. (2001). The effect of boron and magnesium additives on catalytic perform of Mo-0/Si02 in the partial oxidation of methane, Pol. J. Chem. Tech., 3, 16–19.Search in Google Scholar

30. Parmaliana, A., Frusteri, F., Arena, F., Mezzapica, A. & Sokolovskii, V. (1998). Synthesis of methyl formate via two-step methane partial oxidation, Catal. Today, 46, 117–125. DOI: 10.1016/S0920-5861(98)00333-2.10.1016/S0920-5861(98)00333-2Search in Google Scholar

31. Durante, V. & Walker, D. (1990). EP 0393895.Search in Google Scholar

32. Labinger, J.A. (1995). Methane activation in homogeneous systems, Fuel Process. Technol., 42, 325–338. DOI: 10.1016/0378-3820(94)00107-5.10.1016/0378-3820(94)00107-5Search in Google Scholar

33. Kaleńczuk, R.J. & Ciarka, A. (2005). Materialy XXXVII Ogolnopolskiego Kolokwium Katalitycznego, 88.Search in Google Scholar

34. Kudo, H. & Ono, T. (1997). Partial oxidation of CH4 over ZSM-5 catalysts, Appl. Sci., 121/122, 413–416. DOI: 10.1016/S0169-4332(97)00348-6.10.1016/S0169-4332(97)00348-6Search in Google Scholar

35. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5, Appl. Catal. A, 277, 147–153 DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005Search in Google Scholar

36. Michalkiewicz, B. (2005) Kinetics of Partial Methane Oxidation Process over the Fe-ZMS-5 Catalysts, Chem. Pap., 59, 403–408 DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005Search in Google Scholar

37. Hunter, N.R., Gesser, H.D., Morton, L.A. & Fung, D.P.C., Prepr. 35 th Can. Chem. Eng. Conf., Calgary 6–9 Oct 1985.Search in Google Scholar

38. Rytz, D.W. & Baiker, A. (1991). Partial oxidation of methane to methanol in a flow reactor an elevated pressure, Ind. Eng. Chem. Res., 30, 2287–2292. DOI: 10.1021/ie00058a007.10.1021/ie00058a007Search in Google Scholar

39. Shilov, A.E. & Shul’pin, G.B. (1997). Activation of C-H Bonds by Metal Complexes, Chem. Rev., 97, 2879–2932. DOI:10.1021/cr9411886.10.1021/cr9411886Search in Google Scholar

40. Fu, G. & Xu, X. Mechanistic Insights into Selective Oxidation of Light Alkanes by Transition Metal Compounds/Complexes. In Computational Organometallic Chemistry; Wiest, O., Wu, Y., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012.10.1007/978-3-642-25258-7_5Search in Google Scholar

41. Gol’dshleger, N.F., Es’kova, V.V., Shilov, A.E. & Steinman, A.A. (1972). Zh.Fiz. Khim., 46, 1353.Search in Google Scholar

42. Lin, M., Hogan, T. & Sen, A. (1997). A Highly Catalytic Bimetallic System for the Low-Temperature Selective Oxidation of Methane and Lower Alkane with Dioxygen as the Oxidant, J. Am. Chem. Soc., 119, 6048–6053. DOI: 10.1021/ja964371k.10.1021/ja964371kSearch in Google Scholar

43. Lin, M. & Sen, A. (1996) US 5, 510, 525.Search in Google Scholar

44. Lin, M., Hogan, T. & Sen, A. (1996). Catalytic Carbon–Carbon and Carbon–Hydrogen Bond Cleavage in Lower Alkanes. Low-Temperature Hydroxylations and Hydroxycarbonylations with Dioxygen as the Oxidant, J. Am. Chem. Soc., 118, 4574–4580. DOI: 10.1021/ja953670r.10.1021/ja953670rSearch in Google Scholar

45. Park, E.D., Choi, S.H. & Lee, J.S. (2000). Characterization of Pd/C and Cu catalysts for the oxidation of methane to a methanol derivative, J. Catal., 194, 1, 33–34. DOI: 10.1006/jcat.2000.2907.10.1006/jcat.2000.2907Search in Google Scholar

46. Park, E.D., Hwang, Y.S. & Lee, J.S. (2001). Direct conversion of methane into oxygenates by H2O2 generated in situ from dihydrogen and dioxygen, Catalysis Com.,187–190, DOI: 10.1016/S1566-7367(01)00030-9.10.1016/S1566-7367(01)00030-9Search in Google Scholar

47. Ellis, P.E. & Lyons, J.E. (1990), EP 0 471 561.Search in Google Scholar

48. Ellis, P.E. & Lyons, J.E. (1992), EP 0 532 327.10.1007/978-1-349-09924-5_9Search in Google Scholar

49. Nizova, G.V., Süss-Fink, G. & Shul’pin, G.B. (1997). Catalytic oxidation of methane to methyl hydroperoxide and other oxygenates under mild conditions, Chem. Commun., 397–398. DOI: 10.1039/A607765J.10.1039/a607765jSearch in Google Scholar

50. Nizova, G.V., Süss-Fink, G., Stanislas, S. & Shul’pin, G.B. (1998). xidations by the reagent O2–H2O2 – vanadate anion – pyrazine-2-carboxylic acid’.: Part 10. Oxygenation of methane in acetonitrile and water, J. Mol. Catal. A. Chem., 130, 1–2, 163–170 DOI: 10.1016/S1381-1169(97)00210-0.10.1016/S1381-1169(97)00210-0Search in Google Scholar

51. Lee, B-J., Kitsukawa, S., Nakagawa, H., Asakura, S. & Fukuda, K. (1998). The Partial Oxidation of Methane to Methanol with Nitrite and Nitrate Melts, Z. Naturforsch., 679.10.1515/znb-1998-0705Search in Google Scholar

52. Peng, J. & Deng, Y. (2000). Direct catalytic conversion of methane in molten salt medium system under mild conditions, Appl. Catal. A, 201, 2, 155–157. DOI: 10.1016/S0926-860X(00)00561-5.10.1016/S0926-860X(00)00561-5Search in Google Scholar

53. Sherman, J.H. (1999). US 5954925.Search in Google Scholar

54. Stauffer, J.E. (1993). US 5185479.Search in Google Scholar

55. Seki, Y., Mizuno, N. & Misono, M. (1997). High-yield liquid-phase oxygenation of methane with hydrogen peroxide catalyzed by 12-molybdovanadophosphoric acid catalyst precursor, Appl. Catal. A.,158, 1–2, 47–51. DOI: 10.1016/S0926-860X(97)00177-4.10.1016/S0926-860X(97)00177-4Search in Google Scholar

56. Seki, Y., Min, J. S., Mizuno, N. & Misono, M. (2000). Reaktion mechanism of oxidation of methane with hydrogen-peroxide catalysed by 1,1 – molybdo – 1 vanadophosphoric acid catalyst precursor, J. Phys. Chem. B.,104, 5940–5944. DOI: 10.1021/jp000406y.10.1021/jp000406ySearch in Google Scholar

57. Periana, R.A., Taube, H. & Evitt, E.R. (1993). US 5, 233, 113.Search in Google Scholar

58. Periana, R.A., Taube, D.J., Gamble, S., Taube, H., Satoh, T. & Fujii, H. (1998). Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative, Science, 280 560–564. DOI: 10.1126/science.280.5363.560.10.1126/science.280.5363.560Search in Google Scholar

59. Michalkiewicz, B., Kałucki, K. & Sośnicki, J.G. (2003). Catalytic system containing metallic palladium in the process methane partial oxidation, J. Catal., 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-XSearch in Google Scholar

60. Mukhopadhyay, S. & Bell, A.T. (2003). Direct catalytic sulfonation of methane with SO2 to methanesulfonic acid (MSA) in the presence of molecular O2, Chem. Commun, 1590–1591. DOI: 10.1039/B303561A.10.1039/b303561aSearch in Google Scholar

61. Mukhopadhyay, S., Bell, A.T. & Zerella, M. (2005). A High-Yield, Liquid-Phase Approach for the Partial Oxidation of Methane to Methanol using SO3 as the Oxidant, Adv.Synth. Catal., 347, 1203–1206. DOI: 10.1002/adsc.200404394.10.1002/adsc.200404394Search in Google Scholar

62. Cheng, J., Li, Z., Haught, M. & Tang, Y. (2006) Direct methane conversion to methanol by ionic liquid-dissolved platinum catalysts, Chem. Commun., 4617–4619. DOI: 10.1039/b610328f.10.1039/b610328f17082861Search in Google Scholar

63. Periana, R.A., Taube, D.J., Evitt, E.R., Löffler, D.G., Wentrcek, P.R., Voss, G. & Masuda, T. (1993). A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol, Science, 259 340–343. DOI: 10.1126/science.259.5093.340.10.1126/science.259.5093.340Search in Google Scholar

64. Gang, X., Birch, H., Zhu, Y., Hjuler, H.A. & Bjerrum, N.J. (2000). Direct Oxidation of Methane to Methanol by Mercuric Sulfate Catalyst, J. Catal. 196, 2, 287–292. DOI: 10.1006/jcat.2000.3051.10.1006/jcat.2000.3051Search in Google Scholar

65. Sen, A., Benvenuto, M.A., Lin, M., Hutson, A.C. & Basickes, N. (1994). Activation of Methane and Ethane and Their Selective Oxidation to the Alcohols in Protic Media, J. Am. Chem. Soc. 116, 3, 998–1003 DOI: 10.1021/ja00082a022.10.1021/ja00082a022Search in Google Scholar

66. Basickes, N., Hogan, T.E. & Sen, A. (1996). Radical-Initiated Functionalization of Methane and Ethane in Fuming Sulfuric Acid, J. Am. Chem. Soc., 118, 51, 13111–13112 DOI: 10.1021/ja9632365.10.1021/ja9632365Search in Google Scholar

67. Mukhopadhyay, S. & Bell, A.T. (2004). Catalyzed sulfonation of methane to methanesulfonic acid, Journal of Molecular Catalysis, 211,1 – 2, 59–65. DOI: 10.1016/j.molcata.2003.10.015.10.1016/j.molcata.2003.10.015Search in Google Scholar

68. Fu, G., Xu, X. & Wan, H. (2006). Mechanism of methane oxidation by transition metal oxides: A cluster model study, Catal. Today, 117, 1–3, 133–137. DOI: 10.1016/j.cattod.2006.05.048.10.1016/j.cattod.2006.05.048Search in Google Scholar

69. Carley A.F., Davies P.R. & Roberts M.W. (2005). Activation of oxygen at metal surfaces, Phil. Trans. R. Soc. A, 363, 829–846. DOI:10.1098/rsta.2004.1544.10.1098/rsta.2004.1544Search in Google Scholar

70. Catlow, C.R.A., French, S.A., Sokol, A.A. & Thomas, J.M. (2005). Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts, Phil. Trans. R. Soc. A, 363, 913–936. DOI:10.1098/rsta.2004.1529.10.1098/rsta.2004.1529Search in Google Scholar

71. Sun, M., Zhang, J., Putaj, P., Caps, V., Lefebvre, F., Pelletier, J. & Basset, J.M. (2013). Catalytic Oxidation of Light Alkanes (C1–C4) by Heteropoly Compounds, Chem. Rev. 2014, 114, 981–1019. DOI.org/10.1021/cr300302b.Search in Google Scholar

72. Kao, L.C., Hutson, A.C. & Sen, A. (1991). Low-Temperature, Palladium(I1)-Catalyzed, Solution-Phase Oxidation of Methane to a Methanol Derivative, J. Am. Chem. Soc. 113, 2, 700–701 DOI: 10.1021/ja00002a063.10.1021/ja00002a063Search in Google Scholar

73. Taylor, Ch.E., Anderson, R.R. & Noceti, R.P. (1997). Activation of methane with organopalladium complexes, Catalysis Today, 35, 4, 407–413. DOI: 10.1016/S0920-5861(96)00213-1.10.1016/S0920-5861(96)00213-1Search in Google Scholar

74. Michalkiewicz, B. (2003). Methane Conversion to Methanol in Condensed Phase, Kinet. Catal., 44, 6, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.10.1023/B:KICA.0000009057.79026.0bSearch in Google Scholar

75. Michalkiewicz, B. & Kałucki, K. (2003). The Role of Pressure in the Partial Methane Oxidation Process in the Pd-Oleum Environment, Chem. Pap., 57, 6, 393–396.Search in Google Scholar

76. Michalkiewicz, B. (2006). Methane esterification in oleum, Chem. Pap., 602, 5, 371–374. DOI: 10.2478/s11696-006-0067-z.10.2478/s11696-006-0067-zSearch in Google Scholar

77. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol, J. Membrane Sci., 286, 1–2, 223–227. DOI: 10.1016/j.memsci.2006.09.039.10.1016/j.memsci.2006.09.039Search in Google Scholar

78. Periana, R.A., Mironov, O., Taube, D.J., Bhalla, G. & Jones, C.J. (2003). Catalytic, Oxidative Condensation of CH4 to CH3COOH in One Step via CH Activation, Science, 301, 5634, 814–818. DOI: 10.1126/science.1086466.10.1126/science.108646612907796Search in Google Scholar

79. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation, Appl. Catal. A, 307, 2, 270–274. DOI: 10.1016/j.apcata.2006.04.006.10.1016/j.apcata.2006.04.006Search in Google Scholar

80. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure, Catal. Commun.,8, 12, 1939–1942. DOI: 10.1016/j.catcom.2007.03.014.10.1016/j.catcom.2007.03.014Search in Google Scholar

81. Gang, X., Zhu, Y., Birch, H., Aage, H., Hjuler, A. & Bjerrum, N. (2004). Iodine as catalyst for the direct oxidation of methane to methyl sulfates in oleum, Appl. Catal. A., 261, 1, 91–98. DOI: 10.1016/j.apcata.2003.10.039.10.1016/j.apcata.2003.10.039Search in Google Scholar

82. Periana, R.A., Mironov, O., Taube, D.J., Bhalla, G., Gamble, S. (2002). High Yield Conversion of Methane to Methyl bisulfate Catalyzed by Iodine Cations, Chem. Commun., 2376–2377. DOI: 10.1039/B205366G.10.1039/b205366g12430448Search in Google Scholar

83. Zerella, M., Bell, A.T. (2006). Pt-catalyzed oxidative carbonylation of methane to acetic acid in sulfuric acid, Journal of Molecular Catalysis, 259, 1–2, 296–301. DOI: 10.1016/j.molcata.2006.06.059.10.1016/j.molcata.2006.06.059Search in Google Scholar

84. Michalkiewicz, B., Jarosińska, M. & Łukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine, Chem. Engineer. J., 154, 1–3, 156–161. DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046Search in Google Scholar

85. Michalkiewicz, B. (2011) Methane oxidation to methylbisulfate in oleum at ambient pressure in the presence of iodine as a catalyst, Appl. Catal. A., 394, 1–2, 266–268. DOI: 10.1016/j.apcata.2011.01.014.10.1016/j.apcata.2011.01.014Search in Google Scholar

86. Vargaftik, M.N., Stolarov, I.P. & Moiseev, I.L. (1990). Highly selective partial oxidation of methane to methyl trifluoroacetate, J. Chem. Soc., Chem. Commun., 1049–1050 DOI: 10.1039/C39900001049.10.1039/c39900001049Search in Google Scholar

87. Yamanaka, I., Soma, M. & Otsuka, K. (1995). Oxidation of methane to methanol with oxygen catalyzed by europium trichloride at room-temperature, J.Chem. Soc., Chem. Commun., 2235–2236. DOI: 10.1039/C39950002235.10.1039/c39950002235Search in Google Scholar

88. Yamanaka, I., Soma, M. & Otsuka, K. (1996). Enhancing effect of titanium (II) for the oxidation of methane with O – 2 by an EuCL3 – Zn –CF3CO2H – catalytic system at 40°, Chem. Lett., 565. DOI: 10.1246/cl.1996.565.10.1246/cl.1996.565Search in Google Scholar

89. Mukhopadhyay, S. & Bell, A. (2004). Direct sulfonation of methane to methanesulfonic acid by sulfur trioxide catalyzed by cerium(IV) sulfate in the presence of molecular oxygen, Advanced Synthesis & Catalysis, 348, 913–916. DOI: 10.1002/adsc.200404060.10.1002/adsc.200404060Search in Google Scholar

90. Mukhopadhyay, S. & Bell, A. (2003). Direct liquid-phase sulfonation of methane to methanesulfonic acid by SO3 in the presence of a metal peroxide, Angew. Chem. Internat. Edition, 42, 9, 1019–1021. DOI: 10.1002/anie.200390260.10.1002/anie.20039026012616554Search in Google Scholar

91. Mukhopadhyay, S. & Bell, A. (2003) Direct sulfonation of methane at low pressure to methanesulfonic acid in the presence of potassium peroxydiphosphate as the initiator, Organic Process Research & Development, 7, 2, 161–163, DOI: 10.1021/op020079n.10.1021/op020079nSearch in Google Scholar

92. Jones, C.J., Taube, D., Periana, R.A., Nielsen, R.J., Oxgaard, J. & Goddard, W.A. (2004). Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold, Angewandte Chemie, International Edition, 116, 35, 4626–4629. DOI: 10.1002/ange.200461055.10.1002/ange.200461055Search in Google Scholar

93. Lobree, L.J. & Bell, A.T. (2001). K2S2O8-initiated sulfonation of methane to methanesulfonic acid, Ind. Eng. Chem. Res., 40, 3, 736–742. DOI: 10.1021/ie000725b.10.1021/ie000725bSearch in Google Scholar

94. Periana, R.A., Hashiguchi, B.G., Konnick, M., Bischof, S.M., Gustafson, S.J. Devarajan, D., Gunsalus, N. & Ess, D.H. (2014). Main group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters, Science, 343, 6176, 1232–1237. DOI: 10.1126/science.1249357.10.1126/science.124935724626925Search in Google Scholar

95. Wang, K.X., Xu, H.F., Li, W.S., Au, C.T. & Zhou, X.P. (2006). The synthesis of acetic acid from methane via oxidative bromination, carbonylation, and hydrolysis, Applied Catalysis A, 304, 10, 168–177. DOI: 10.1016/j.apcata.2006.02.035.10.1016/j.apcata.2006.02.035Search in Google Scholar

96. Fengbo, L., Guoqing, Y., Fang, Y. & Fengwen, Y. (2008). Bromine-mediated conversion of methane to C1 oxygenates over Zn-MCM-41 supported mercuric oxide, Appl. Catal. A: General 335, 1, 82–87. DOI: 10.1016/j.apcata.2007.11.014.10.1016/j.apcata.2007.11.014Search in Google Scholar

97. Chan, S.I., Nagababu, P., Yu, S.S.F., Maji, S. & Ramu, R. (2014). Developing an efficient catalyst for controlled oxidation of small alkanes under ambient conditions, Catal. Sci. Technol., 4, 930–935. DOI: 10.1039/C3CY00884C.10.1039/C3CY00884CSearch in Google Scholar

98. Jarosińska, M., Lubkowski, K., Sośnicki, J.G., Michalkiewicz, B. (2008). Application of halogens as catalysts of CH4 esterification, Catal. Lett., 126, 3–4, 407–412. DOI: 0.1007/s10562-008-9645-8.Search in Google Scholar

99. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction, Pol. J. Chem. Technol., 14, 4, 19–21. DOI: 10.2478/v10026-012-0096-z.10.2478/v10026-012-0096-zSearch in Google Scholar

100. Couderc, R. & Baratti, J. (1980). Oxidations of hydrocarbons by methane by the yeast Pichia pastoris. Purification and properties of the alcohol oxidase, Adv. Appl. Microbiol., 44, 2279–2289.Search in Google Scholar

101. Droege, M.W., Satcher, J.H., Reibold, R.A., Weakely’, T.J.R., Chauffe, L. & Watkins, B.E. (1992). Application of coordinating Complexes containing an asymmetric coordinating ligand, 1534.Search in Google Scholar

102. Woodland, M.P. & Dalton, H.J. (1984). Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath), Biol. Chem., 259, 53–59.Search in Google Scholar

103. Green, J. & Dalton, H.J. (1985). Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity, Biol. Chem., 260, 29, 15795–15801.Search in Google Scholar

104. Woodland, M.P., Patil, D.S., Cammack, R. & Dalton, H. (1986). ESR Studies of protein A of the soluble methane monooxygenase from Methylococcus capsulatus (Bath), Biochim. Biophys. Acta, 873, 237–242.Search in Google Scholar

105. Fox, B.G., Surerus, K.K., Munck, E. & Lipscomb, J.D.J. (1988). Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase Mössbauer and EPR studies, J. Biol. Chem., 263, 10553–10556.10.1016/S0021-9258(18)38005-0Search in Google Scholar

106. Prince, R.C., George, G.N., Savas, J.C., Cramer, S.P., Patel, R.N. (1988). Spectroscopic properties of the hydroxylase of methane monooxygenase, Biochim. Biophys. Acta, 952, 220–229.Search in Google Scholar

107. DeWitt, J.G., Benhen, J.G., Rosenzweig, A.C., Hedman, B., Green, J., Pilkington, S., Papaefthymiou, G.C., Dalton, H., Hodgson, K.O. & Lippard, S.J.J. (1992). Biomimetic catalysts application of coordinating complexes containing an asymmetric coordinating ligand, Am. Chem. Soc., 113, 9219–9235.10.1021/ja00024a031Search in Google Scholar

108. Fox, B.G., Froland, W.A., Dege, J.E. & Lipscomb, J.D.J. (1989). Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with a high specific activity from a type II methanotrophs, Biol. Chem., 264, 10023–10033.Search in Google Scholar

109. Merkx, M., Kopp, D.A., Sazinsky, M.H., Blazyk, J.L., Muller, J. & Lippard, S.J. (2001). Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins A list of abbreviations can be found in Section 7, Angew.Chem., Int. Ed., 40, 2782–2807. DOI: 10.1002/1521-3773(20010803)40:153.3.CO;2-G.Search in Google Scholar

110. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3, Chemical Papers, 63, 2, 105–110. DOI: 10.2478/s11696-008-0100-5.10.2478/s11696-008-0100-5Search in Google Scholar

111. Vanelderen, P., Hadt, R.G., Smeets, P.J., Solomon,, E.I., Schoonheydt R.A. & Sels, B.F. (2011). Cu-ZSM-5: A biomimetic inorganic model for methane oxidation, J. Catal., 284, 2, 157–164. DOI: 10.1016/j.jcat.2011.10.009.10.1016/j.jcat.2011.10.009359394623487537Search in Google Scholar

112. Chan, S.I., Lu, Y.J., Nagababu, P., Maji, S., Hung, M.Ch., Lee, M.M., Hsu, I.J., Minh, P.D., Lai, J.C.H., Kok, Y.N., Sridevi, R., Steve, S.F. Yu, Michael K. Chan. (2013). Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters, Angew. Chem.Int. Ed., 52, 3731–3735. DOI: 10.1002/anie.201209846.10.1002/anie.20120984623418110Search in Google Scholar

113. Shilov, A.E. & Shteinman, A.A. (2012). Methane hydroxylation: a biomimetic approach, Russ. Chem.Rev., 81, 4, 291. DOI: 10.1070/RC2012v081n04ABEH004271.10.1070/RC2012v081n04ABEH004271Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering