Cite

1. Saif, M. & Abdel-Mottaleb, M.S.A. (2007). Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorg. Chim. Acta 360, 2863-2874. DOI: 10.1016/j. ica.2006.12.052.Search in Google Scholar

2. Radecka, M., Gorzkowska-Sobaś, A., Zakrzewska, K. & Sobaś, P. (2004). Nanocermet TiO2:Au thin fi lm electrodes for wet electrochemical solar cells, Opto-Electron. Rev. 12, 53-56.Search in Google Scholar

3. Mazur, M., Wojcieszak, D., Domaradzki, J., Kaczmarek, D., Song, S. & Placido, F. (2013). TiO2/SiO2 multilayer as an antirefl ective and protective coating deposited by microwave assisted magnetron sputtering, Opto-Electron. Rev. 21(2), 233-238. DOI: 10.2478/s11772-013-0085-7.10.2478/s11772-013-0085-7Search in Google Scholar

4. Comini, E., Ferroni, M., Guidi, V., Vomiero, A., Merli, P.G., Morandi, V., Sacerdoti, M., Della Mea, G. & Sberveglieri, G. (2005). Effects of Ta/Nb-doping on titania-based thin fi lms for gas-sensing, Sensor. Actuat. B 108, 21-28. DOI: 10.1016/j. snb.2004.10.041.Search in Google Scholar

5. Ruiz, A.M., Cornet, A., Shimanoe, K., Morante, J.R. & Yamazoe, N. (2005). Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments, Sensor. Actuat. B 108, 34-40. DOI: 10.1016/j.snb.2004.09.045.10.1016/j.snb.2004.09.045Search in Google Scholar

6. Janus, M. & Morawski, A.W. (2007). New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition. Appl. Catal. B Environ. 75, 118-123. DOI: 10.1016/j.apcatb.2007.04.003.10.1016/j.apcatb.2007.04.003Search in Google Scholar

7. Bubacz, K., Choina, J., Dolat, D., Borowiak-Palen, E., Moszynski, D. & Morawski, A.W. (2010). Studies on nitrogen modifi ed TiO2 photocatalyst prepared in different conditions, Mater. Res. Bull. 45, 1085-1091. DOI: 10.1016/j.materresbull.2010.06.024.10.1016/j.materresbull.2010.06.024Search in Google Scholar

8. Dolat, D., Mozia, S., Wróbel, R.J., Moszynski, D., Ohtani, B., Guskos, N. & Morawski, A.W. (2015). Nitrogen-doped, metal-modifi ed rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B Environ. 162, 310-318. DOI: 10.1016/j.apcatb.2014.07.001.10.1016/j.apcatb.2014.07.001Search in Google Scholar

9. Eufi nger, K., Poelman, D., Poelman, H., Gryse, De R. & Marin, G.B. (2007). Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin fi lms, Appl. Surf. Sci. 254, 148-152. DOI: 10.1016/j.apsusc.2007.07.009.10.1016/j.apsusc.2007.07.009Search in Google Scholar

10. Verma, A., Samanta, S. B., Bakhshi, A.K., Agnihotry, S.A. (2005). Effect of stabilizer on structural, optical and electrochemical properties of sol-gel derived spin coated TiO2 fi lms, Sol. Energ. Mater. Sol. C. 88, 47-64. DOI: 10.1016/j. solmat.2004.10.006.Search in Google Scholar

11. Zhang, J.Y., Boyd, I.W., O’Sullivan, B.J., Hurley, P.K., Kelly, P.V. & Senateur, J.P. (2002). Nanocrystalline TiO2 fi lms studied by optical, XRD and FTIR spectroscopy, J. Non-Cryst. Solids 303, 134-138. DOI: 10.1016/S0022-3093(02)00973-0.10.1016/S0022-3093(02)00973-0Search in Google Scholar

12. Xie Y., Ma Z., Liu L., Su Y., Zhao H., Liu Y., Zhang Z., Duan H., Li J., Xiea E. (2010). Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2. Appl. Phys. Lett. 97(141916), 1-3. DOI: 10.1063/1.3496471.10.1063/1.3496471Search in Google Scholar

13. Park, B. (2007). Current and Future Applications of Nanotechnology, Iss. Environ. Sci. Technol. 24, 1-18, The Royal Society of Chemistry.Search in Google Scholar

14. Chen, L., Graham, M.E., Li, G., Gray, K.A. (2006). Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition, Thin Solid Films 515, 1176-1181. DOI: 10.1016/j.tsf.2006.07.094.10.1016/j.tsf.2006.07.094Search in Google Scholar

15. Mellott, N.P., Durucan, C., Pantano, C.G., Guglielmi, M. (2006). Commercial and laboratory prepared titanium dioxide thin fi lms for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films 502, 112-120. DOI: 10.1016/j.tsf.2005.07.255.10.1016/j.tsf.2005.07.255Search in Google Scholar

16. Wu, K.R., Wang, J.J., Liu, W.C., Chen, Z.S. & Wu, J.K. (2006). Deposition of graded TiO2 fi lms featured both hydrophobic and photo-induced hydrophilic properties, Appl. Surf. Sci. 252, 5829-5838. DOI: 10.1016/j.apsusc.2005.08.016.10.1016/j.apsusc.2005.08.016Search in Google Scholar

17. Yuan, M., Zhang, J., Yan, S., Luo, G., Xu, Q., Wang, X. & Li, C. (2011). Effect of Nd2O3 addition on the surface phase of TiO2 and photocatalytic activity studied by UV Raman spectroscopy. J. Alloy. Compd. 509, 6227-6235. DOI: 10.1016/j. jallcom.2011.03.010.Search in Google Scholar

18. Kralchevska, R., Milanova, M., Hristov, D., Pintar, A. & Todorovsky, D. (2012). Synthesis, characterization and photocatalytic activity of neodymium, nitrogen and neodymium- -nitrogen doped TiO2. Mat. Res. Bull. 47, 2165-2177. DOI: 10.1016/j.materresbull.2012.06.009.10.1016/j.materresbull.2012.06.009Search in Google Scholar

19. Xie, Y. & Yuan, C. (2005), Photocatalytic and photoelectrochemical performance of crystallized titanium dioxide sol with neodymium ion modifi cation. J. Chem. Technol. Biot. 90, 954-963. DOI: 10.1002/jctb.1270.10.1002/jctb.1270Search in Google Scholar

20. Burns, A., Li, W., Baker, C. & Shah, S.I. (2002). Sol- -gel synthesis and characterization of neodymium-ion doped nanostructured titania thin fi lms. Mat. Res. Soc. Symp. Proc. 703, V5.2.1-V5.2.6. DOI: 10.1557/PROC-703-V5.2.10.1557/PROC-703-V5.2Search in Google Scholar

21. Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Mazur, M., Morawski, A., Janus, M., Prociów, E. & Gemmellaro, P. (2012). Photocatalytic properties of transparent TiO2 coatings doped with neodymium, Pol. J. Chem. Technol. 14(3), 1-7. DOI: 10.2478/v10026-012-0077-2.10.2478/v10026-012-0077-2Search in Google Scholar

22. Wojcieszak, D., Kaczmarek, D., Domaradzki, J. & Mazur, M. (2013). Correlation of Photocatalysis and Photoluminescence Effect in Relation to the Surface Properties of TiO2:Tb Thin Films, Int. J. Photoenergy 2013, Article ID 526140. http://dx.doi.org/10.1155/2013/52614010.1155/2013/526140Search in Google Scholar

23. Wojcieszak, D., Mazur, M., Kurnatowska, M., Kaczmarek, D., Domaradzki, J., Kępiński, L. & Chojnacki, K. (2014). Infl uence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings, Int. J. Photoenergy 2014, Article ID 463034. http://dx.doi.org/10.1155/2014/46303410.1155/2014/463034Search in Google Scholar

24. Tryba, B., Morawski, A.W., Inagaki, M. & Toyoda, M. (2006). Mechanism of phenol decomposition on Fe-C-TiO2 and Fe-TiO2 photocatalysts via photo-Fenton process, J. Photoch. Photobio. A 179, 224-228. DOI: 10.1016/j.jphotochem.2005.08.01910.1016/j.jphotochem.2005.08.019Search in Google Scholar

25. Jiang, X., Yang, L., Liu, P., Li, X. & Shen, J. (2010). The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles, Colloid. Surface B 79, 69-74. DOI:10.1016/j.colsurfb.2010.03.03110.1016/j.colsurfb.2010.03.03120417077Search in Google Scholar

26. Khalid, N.R., Ahmed, E., Hong, Z., Zhang, Y., Ullah, M., Ahmed, M. (2013). Graphene modifi ed Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation, Ceram. Int. 39, 3569-3575. DOI: 10.1016/j.ceramint.2012.10.183.10.1016/j.ceramint.2012.10.183Search in Google Scholar

27. Bokare, A., Sanap, A., Pai, M, Sabharwal, S., Athawale, A.A. (2013). Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation, Colloid. Surface. B 102, 273- 280. DOI: 10.1016/j.colsurfb.2012.08.030.10.1016/j.colsurfb.2012.08.030Search in Google Scholar

28. Rengaraj, S., Venkataraj, S., Yeon, J.W., Kim, Y., Li, X.Z., Pang, G.K.H. (2007). Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B. Environ. 77, 157-165. DOI: 10.1016/j.apcatb.2007.07.016.10.1016/j.apcatb.2007.07.016Search in Google Scholar

29. Kim, W.S., Ha, S.M., Yun, S. & Park, H.H. (2002). Microstructure and electrical properties of Ln2Ti2O7 (Ln=La, Nd), Thin Solid Films 420, 575-578. DOI: 10.1016/S0040-6090(02)00837-4.10.1016/S0040-6090(02)00837-4Search in Google Scholar

30. Eufi nger, K., Tomaszewski, H., Depla, D., Poelman, H., Poelman, D., De Gryse, R. (2006). The d.c. magnetron sputtering behavior of TiO2-x targets with added Fe2O3 or Nd2O3, Thin Solid Films 515, 683-686. DOI: 10.1016/j.tsf.2005.12.241.10.1016/j.tsf.2005.12.241Search in Google Scholar

31. Pandiyan, R., Bartali, R., Micheli, V., Gottardi, G., Luciu, I., Ristic, D., Goget, G.A., Ferrari, M. & Laidani, N. (2011). Infl uence of Nd3+ doping on the structural and near-IR photoluminescence properties of nanostructured TiO2 fi lms, Energy Procedia 10, 167-171. DOI: 10.1016/j.egypro.2011.10.171.10.1016/j.egypro.2011.10.171Search in Google Scholar

32. Shao, Z., Saitzek, S., Roussel, P., Huvé, M., Desfeux, R., Mentré, O. & Abraham, F. (2009). An easy sol-gel route for deposition of oriented Ln2Ti2O7 (Ln=La, Nd) fi lms on SrTiO3 substrates, J. Cryst. Growth 311, 4134-4141. DOI: 10.1016/j.jcrysgro.2009.06.051.10.1016/j.jcrysgro.2009.06.051Search in Google Scholar

33. Song, Y.J., Ferroelectric Thin Films for High Density Non-volatile Memories, Virgina Polytechnic Institute and State University, Blacksburg, 1998 (Ph. D. Thesis).Search in Google Scholar

34. Havelia, S., Balasubramaniam, K.R., Spurgeon, S., Cormack, F. & Salvador, P.A. (2008). Growth of La2Ti2O7 and LaTiO3 thin fi lms using pulsed laser deposition, J. Cryst. Growth 310, 1985-1990. DOI: 10.1016/j.jcrysgro.2007.12.006.10.1016/j.jcrysgro.2007.12.006Search in Google Scholar

35. Kannan, P.K., Saraswathi, R. & Rayappan, J.B.B. (2010). A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin fi lm, Sens. Actuat. A Phys. 164, 8-14. DOI: 10.1016/j.sna.2010.09.006.10.1016/j.sna.2010.09.006Search in Google Scholar

36. Kleinhempel, R., Wahl, A. & Thielsch, R. (2011). Large area AR coating on plastic substrate using roll to roll methods, Surf. Coat. Technol. 205, S502-S505. DOI: 10.1016/j. surfcoat.2010.10.064.Search in Google Scholar

37. Szczyrbowski, J., Dietrich, A. & Hartig, K. (1989). Bendable silver-based low emissivity coating on glass, Sol. Energ. Mater. 19, 43-53. DOI: 10.1016/0165-1633(89)90022-1.10.1016/0165-1633(89)90022-1Search in Google Scholar

38. Domaradzki, J., Kaczmarek, D. & Prociow, E.L. Patent PL 210206, 2011.Search in Google Scholar

39. Prociów, E., Domaradzki, J., Kaczmarek, D. & Berlicki, T. Patent PL 211827, 2012. Search in Google Scholar

40. Prociów, E., Domaradzki, J., Kaczmarek, D. & Berlicki, T. Patent PL 212461, 2012.Search in Google Scholar

41. Billard, A., Mercs, D., Perry, F. & Frantz, C. (1999). Infl uence of the target temperature on a reactive sputtering process, Surf. Coat. Technol. 116-119, 721-726. DOI:10.1016/ S0257-8972(99)00261-3.10.1016/S0257-8972(99)00261-3Search in Google Scholar

42. Wasielewski, R., Domaradzki, J., Wojcieszak, D., Kaczmarek, D., Borkowska, A., Prociow, E. & Ciszewski, A. (2008). Surface characterization of TiO2 thin fi lms obtained by high- -energy reactive magnetron sputtering, Appl. Surf. Sci. 254, 4396-4400. DOI: 10.1016/j.apsusc.2008.01.017.10.1016/j.apsusc.2008.01.017Search in Google Scholar

43. Domaradzki, J., Kaczmarek, D., Prociow, E., Borkowska, A., Schmeisser, D. & Beuckert, G. (2006). Mircrostructure and optical properties of TiO2 thin fi lms prepared by low pressure hot target reactive magnetron sputtering, Thin Solid Films 513, 269-274. DOI: 10.1016/j.apsusc.2008.01.017.10.1016/j.apsusc.2008.01.017Search in Google Scholar

44. Posadowski, W.M., Wiatrowski, A., Dora, J. & Radzimski, Z.J. (2008). Magnetron sputtering process control by medium- -frequency power supply parameter, Thin Solid Films 516, 4478-4482. DOI: 10.1016/j.tsf.2007.05.077.10.1016/j.tsf.2007.05.077Search in Google Scholar

45. Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Prociów, E., Mazur, M. & Placido, F. Lapp S. (2012). Hardness of nanocrystalline TiO2 thin fi lms, J. Nano Res. 18/19, 195-200. DOI: 10.4028/www.scientifi c.net/JNanoR.18-19.195.Search in Google Scholar

46. Kwok, D.Y., Neumann, A.W. (1999). Contact angle measurement and contact angle interpretation. Adv. Coll. Interfac. 81, 167-249. DOI: 10.1016/S0001-8686(98)00087-6.10.1016/S0001-8686(98)00087-6Search in Google Scholar

47. Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F. & Jiazhong, S. (2006), Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energ. Mater. Sol. C 90, 1773-1787. DOI: 10.1016/j. solmat.2005.11.007.Search in Google Scholar

48. Choi, W. (2006), Pure and modifi ed TiO2 photocatalysts and their environmental applications, Catal. Surv. Asia 10, 16-28. DOI: 10.1007/s10563-006-9000-2.10.1007/s10563-006-9000-2Search in Google Scholar

49. Fujishima, A., Rao, T.N., Tryk, D.A. (2000). Titanium dioxide photocatalysis, J. Photoch. Photobio. C 1, 1-21. DOI: 10.1016/S1389-5567(00)00002-2.10.1016/S1389-5567(00)00002-2Search in Google Scholar

50. Zhao, L., Han, M. & Lian, J. (2008). Photocatalytic activity of TiO2 fi lms with mixed anatase and rutile structures prepared by pulsed laser deposition, Thin Solid Films 516, 3394-3398. DOI: 10.1016/j.tsf.2007.10.102.10.1016/j.tsf.2007.10.102Search in Google Scholar

51. Sharfrin, E. & Zisman, W.A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J. Phys. Chem. 64, 519-524. DOI: 10.1021/j100834a002.10.1021/j100834a002Search in Google Scholar

52. Moulder, J., Stickle, W., Sobol, P. & Bomben, K. (1995). Handbook of X-ray Photoelectron Spectroscopy, USA: Physical Electronics Inc., ISBN 0-9648124-1-X.Search in Google Scholar

53. Wang, T.M., Zheng, S.K., Hao, W.C. & Wang, C. (2002). Studies on photocatalytic activity and transmittance spectra of TiO2 thin fi lms prepared by r.f. magnetron sputtering method, Surf. Coat. Technol. 155, 141-145. DOI: 10.1016/S0257- -8972(02)00004-X.Search in Google Scholar

54. Tauc, J. (1970). Optical Properties of Solids, Amsterdam, North HollandSearch in Google Scholar

55. Jing, L.Q., Yuan, F.L., Hou, H.G., Xin, B.F., Cai, W.M., Fu, H.G. (2005). Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Sci. China Ser. B Chem. 48(1), 25-30. DOI: 10.1360/03yb0191.10.1360/03yb0191Search in Google Scholar

56. Boulbar, E., Millon, E., Ntsoenzok, E., Hakim, B., Seiler, W., Boulmer-Leborgne, C. & Perriere, J. (2012). UV to NIR photon conversion in Nd-doped rutile and anatase titanium dioxide fi lms for silicon solar cell application. Opt. Mater. 34, 1419-1425. DOI: 10.1016/j.optmat.2012.02.033. 10.1016/j.optmat.2012.02.033Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering