Open Access

Lagrangian simulation and analysis of the power-law fluid mixing in the two-blade circular mixers using a modified WCSPH method


Cite

1. Peryt-Stawiarska, S. & Jaworski, Z. (2008). Fluctuations of the non-Newtonian fl uid fl ow in a Kenics static mixer:An experimental study. Pol. J. Chem. Tech. 10(3), 35-37. DOI: 10.2478/v10026-008-0033-3.10.2478/v10026-008-0033-3Search in Google Scholar

2. Lai, A.C.K. & Chen, F.Z. (2007). Comparison of a new Eulerian model with a modifi ed Lagrangian approach for particle distribution and deposition indoors. Atmos. Environ. 41(25), 5249-5256. DOI: 10.1016/j.atmosenv.2006.05.088.10.1016/j.atmosenv.2006.05.088710830732288553Search in Google Scholar

3. Zhang, X. & Ahmadi, G. (2005). Eulerian-Lagrangian simulations of liquid-gas-solid fl ows in three-phase slurry reactors. Chem. Eng. Sci. 60(18), 5089-5104. DOI: 10.1016/j. ces.2005.04.033.Search in Google Scholar

4. Lenaerts, T. & Dutré, P. (2009). Mixing fl uids and granular materials. Comput. Graph. Forum 28(2), 213-218. DOI: 10.1111/j.1467-8659.2009.01360.x.10.1111/j.1467-8659.2009.01360.xSearch in Google Scholar

5. Robinson, M., Cleary, P. & Monaghan, J.J. (2008). Analysis of mixing in a twin cam mixer using Smoothed Particle Hydrodynamics. AIChE 54(8), 1987-1998. DOI: 10.1002/aic.11530.10.1002/aic.11530Search in Google Scholar

6. Orthmann, J. & Kolb, A. (2012). Temporal blending for adaptive SPH. Comput. Graph. Forum 31(8), 1-12. DOI: 10.1111/j.1467-8659.2012.03186.x.10.1111/j.1467-8659.2012.03186.xSearch in Google Scholar

7. Gingold, R.A. & Monaghan, J.J. (1977). Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon. Not. Roy. Astron. Soc. 181, 375-389.10.1093/mnras/181.3.375Search in Google Scholar

8. Lucy, L.B. (1997). A numerical approach to the testing of the fi ssion hypothesis. Astron. J. 82, 1013-1024. DOI: 10.1086/112164.10.1086/112164Search in Google Scholar

9. Antoci, C., Gallati, M. & Sibilla, S. (2007). Numerical simulation of fl uid-structure interaction by SPH. Comput. Struct. 85(11-14), 879-890. DOI: 10.1016/j.compstruc.2007.01.002.10.1016/j.compstruc.2007.01.002Search in Google Scholar

10. Potapov, S., Maurel, B., Combescure, A. & Fabis, J. (2009). Modeling accidental-type fl uid-structure interaction problems with the SPH method. Comput. Struct. 87(11-12), 721-734. DOI: 10.1016/j.compstruc.2008.09.009.10.1016/j.compstruc.2008.09.009Search in Google Scholar

11. Eghtesad, A., Shafi ei, A.R. & Mahzoon, M. (2011). A new fl uid-solid interface algorithm for simulating fl uid structure problems in FGM plates. J. Fluid Struct. 30, 141-158. DOI: 10.1016/j.jfl uidstructs.2012.02.005.Search in Google Scholar

12. Hosseini, S.M. & Amanifard, N. (2007). Presenting a modifi ed SPH algorithm for numerical studies of fl uid-structure interaction problems. IJE Transactions B: Applications 20(2), 167-178.Search in Google Scholar

13. Shamsoddini, R., Sefi d., M. & Fatehi, R. (2014). ISPH modelling and analysis of fl uid mixing in a microchannel with an oscillating or a rotating stirrer. Eng. Appl. Comp. Fluid. 8(2), 289-298.Search in Google Scholar

14. Cheremisinoff, N.P. (2002). Handbook of water and wastewater treatment technology. UK: Butterworth Heinemann.Search in Google Scholar

15. Youcefi , A., Anne-Archard, D., Boisson, H.C. & Sengelin, M. (1997). On the infl uence of liquid elasticity on mixing in a vessel agitated by a two-bladed impeller. J. Fluid Eng-T. ASME, 119(3), 616-622. DOI: 10.1115/1.2819289.10.1115/1.2819289Search in Google Scholar

16. Han, Y., Wang, J.J., Gu, X.P. & Feng, L.F. (2012). Numerical simulation on micromixing of viscous fl uids in a stirred-tank reactor. Chem. Eng. Sci. 74, 9-17. DOI: 10.1016/j. ces.2012.02.018.Search in Google Scholar

17. Bohl, D. (2007). Experimental investigation of the fl uid motion in a cylinder driven by a fl at plate impeller. J. Fluid Eng-T. ASME 129(1), 737-746. DOI: 10.1115/1.2734186.10.1115/1.2734186Search in Google Scholar

18. Bohl, D., Mehta, A., Santitissadeekorn, N. & Bollt, E. (2011). Characterization of mixing in a simple paddle mixer using experimentally derived velocity fi elds. J. Fluid Eng-T. ASME 133(6), 061202-061210. DOI: 10.1115/1.4004086.10.1115/1.4004086Search in Google Scholar

19. Kor, Y.K., Prince, R.G.H. & Fletcher, D.F. (2008). Using CFD to identify means of reducing power consumption for mixing and suspension in paper pulp stock chests. Asia-Pac. J. Chem. Eng. 3(2), 144-150. DOI: 10.1002/apj.126.10.1002/apj.126Search in Google Scholar

20. Paul, E.L., Atiemo-Obeng, V. & Kresta, S.M. (2004). Handbook of industrial mixing: science and practice. USA: Wiley-Interscience.Search in Google Scholar

21. Wendland, H. (1995). Piecewise polynomial, positive defi nite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389-396. DOI: 10.1007/ BF02123482.10.1007/BF02123482Search in Google Scholar

22. Dehnen, W. & Aly, H. (2012). Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. Roy. Astron. Soc. 425(2), 1068-1082. DOI: 10.1111/j.1365-2966.2012.21439.x.10.1111/j.1365-2966.2012.21439.xSearch in Google Scholar

23. Bonet, J. & Lok, T.S. (1999). Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulation. Comput. Meth. Appl. Mech. Eng. 180(1-2), 97-115. DOI: 10.1016/S0045-7825(99)00051-1.10.1016/S0045-7825(99)00051-1Search in Google Scholar

24. Fatehi, R. & Manzari, M.T. (2011). Error estimation in Smoothed Particle Hydrodynamics and a new scheme for second derivatives. Comput. Math. Appl. 61(2), 482-498. DOI: 10.1016/j.camwa.2010.11.028.10.1016/j.camwa.2010.11.028Search in Google Scholar

25. Lee, E.S., Moulinec, C., Xu, R., Laurence, D. & Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417-8436. DOI: 10.1016/j. jcp.2008.06.005.Search in Google Scholar

26. Fatehi, R. & Manzari, M.T. (2011). A remedy for numerical oscillations in weakly compressible Smoothed Particle Hydrodynamics. Int. J. Numer. Meth. Fl. 67(9), 1100-1114. DOI: 10.1002/fl d.2406.Search in Google Scholar

27. Xu, R., Stansby, P. & Laurence, D. (2009). Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228(18), 6703-6725. DOI: 10.1016/j.jcp.2009.05.032.10.1016/j.jcp.2009.05.032Search in Google Scholar

28. Celik, B. & Beskok, A. (2009). Mixing induced by a transversely oscillating circular cylinder in a straight channel. Phys. Fluids 21, 0736011-0736019.10.1063/1.3177001Search in Google Scholar

29. Bell, B. & Surana, K. (1994). P-version least squares fi nite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non- isothermal fl uid fl ow. Int. J. Numer. Meth. Fl. 18, 127-162. DOI: 10.1002/fl d.1650180202.Search in Google Scholar

30. Pianko-Oprych, P. & Jaworski, Z. (2009). CFD modelling of two-phase liquid-liquid fl ow in a SMX static mixer. Pol. J. Chem. Tech. 11( 3), 41-49. DOI: 10.2478/v10026-009-0034-x.10.2478/v10026-009-0034-xSearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering