Open Access

One-dimensional isothermal multicomponent diffusion-reaction model and its application to methanol synthesis over commercial Cu-based catalyst


Cite

1. Xie, K.C. & Fang, D.Y. (2010). Methanol technology. Beijing, China: Chemical Industry Press. (Chinese reference)Search in Google Scholar

2. Caulkin, R., Ahmad, A., Fairweather, M., Jia, X. & Williams, R.A. (2007). An investigation of sphere packed shell-side columns using a digital packing algorithm. Comput. Chem. Eng. 31(12), 1715-1724. DOI: 10.1016/j.compchemeng.2007.03.014.10.1016/j.compchemeng.2007.03.014Search in Google Scholar

3. Ma, H.F., Ying, W.Y. & Fang, D.Y. (2008). Simulation of a combined converter for methanol synthesis. J. East. China. U. Sci. Technol. 34, 149-153. from http://www.cnki.com.cn/Article/CJFDTotal-HLDX200802000.htm (Chinese reference).Search in Google Scholar

4. Aris, R. (1975). The mathematical theory of diffusion and reaction in permeable catalysts. London, UK: Clarendon Press.Search in Google Scholar

5. Wood, J. & Gladden, L.F. (2002). Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 1. Fickian diffusion and pseudo-first-order reaction kinetics. Chem. Eng. Sci. 57(15), 3033-3045. DOI: 10.1016/S0009-2509(02)00183-5.10.1016/S0009-2509(02)00183-5Search in Google Scholar

6. Wood, J., Gladden, L.F. & Keil, F.J. (2002). Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 2. Dusty gas model and general reaction kinetics. Chem. Eng. Sci. 57(15), 3047-3059. DOI: 10.1016/S0009-2509(02)00184-7.10.1016/S0009-2509(02)00184-7Search in Google Scholar

7. Mariani, N.J., Mocciaro, C., Keegan, S.D., Martínez, O.M. & Guillermo, F.B. (2009). E valuating the effectiveness factor from a 1D approximation fitted at high Thiele modulus: Spanning commercial pellet shapes with linear kinetics. Chem. Eng. Sci. 64(11), 2762-2766. DOI: 10.1016/j.ces.2009.02.044.10.1016/j.ces.2009.02.044Search in Google Scholar

8. Aumo, J., Wärnå, J., Salmi, T. & Murzin, D.Y. (2006). Interaction of kinetics and internal diffusion in complex catalytic three-phase reactions: Activity and selectivity in citral hydrogenation. Chem. Eng. Sci. 61(2), 814-822. DOI: 10.1016/j. ces.2005.07.036.Search in Google Scholar

9. Lee, J.K., Ko, J.B. & Kim, D.H. (2004). Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl. Catal., A. 278(1), 25-35. DOI: 10.1016/j. apcata.2004.09.022.Search in Google Scholar

10. Guo, W.Y., Wu, W.Z., Luo, M. & Xiao, W.D. (2013). Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. Fuel Process. Technol. 108, 133-138. DOI: 10.1016/j.fuproc.2012.06.005.10.1016/j.fuproc.2012.06.005Search in Google Scholar

11. Pan, T.S. & Zhu, B.C. (1998). Study on diffusion-reaction process inside a cylindrical catalyst pellet. Chem. Eng. Sci. 53(5), 933-946. DOI: 10.1016/S0009-2509(97)00385-0.10.1016/S0009-2509(97)00385-0Search in Google Scholar

12. Zhang, L. Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2013). Dehydration of methanol to dimethyl ether over γ-Al2O3 catalyst: Intrinsic kinetics and effectiveness factor. Can. J. Chem. Eng. 91(9), 1538-1546. DOI: 10.1002/cjce.21760.10.1002/cjce.21760Search in Google Scholar

13. Zhu, B.C., Song, W.D., Fang, D.Y. & Lu, D.Q. (1984). Multi-component diffusion model for effectiveness factor of porous catalyst (I) Multicomponent diffusion model and numerical computing method. J. Chem. Ind. Eng. 44, 33-40. from http://www.cnki.com.cn/Article/CJFDTotal-HGSZ198401003.htm (Chinese reference).Search in Google Scholar

14. Zhu, B.C., Song, W.D., Fang, D.Y. & Lu, D.Q. (1984). Multi-component diffusion model for effectiveness factor of porous catalyst (II) Effe ctiveness factor of high temperature slight reaction. J. Chem. Ind. Eng, 44, 41-50. form http://www.cnki.com.cn/Article/CJFDTotal-HGSZ198401004.htm (Chinese reference).Search in Google Scholar

15. Li, T., Xu, M.S., Zhu, B.C., Fang, D.Y. & Ying, W.Y. (2009). Reaction-diffusion model for irregularly shaped ammonia synthesis catalyst and its verification under high pressure. Ind. Eng. Chem. Res. 48(19), 8926-8933. DOI: 10.1021/ ie9001266.10.1021/ie9001266Search in Google Scholar

16. Permikin, D.V. & Zverev, V.S. (2013). Mathematical model on surface reaction diffusion in the presence of front chemical reaction. Int. J. Heat Mass Transfer. 57(1), 215-221. DOI: 10.1016/j.ijheatmasstransfer.2012.10.024.10.1016/j.ijheatmasstransfer.2012.10.024Search in Google Scholar

17. Lommerts, B.J., Graaf, G.H. & Beenackers, A.A.C.M. (2000). Mathe matical modeling of internal mass transport limitations in methanol synthesis. Chem. Eng. Sci. 55(23), 5589-5598. DOI: 10.1016/S0009-2509(00)00194-9.10.1016/S0009-2509(00)00194-9Search in Google Scholar

18. Lei, K., Ma, H.F., Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2013). Intrinsic kinetics of methanol synthesis over catalyst SC309. Nat. Gas. Chem. Ind. 3, 1-5. from http://www.cnki.com.cn/Article/CJFDTotal-TRQH201303000.htm (Chinese reference).Search in Google Scholar

19. Graaf, G.H., Scholtens, H., Stamhuis, E.J. & Beenackers A.A.C.M. (1990). Intr a-particle diffusion limitations in low- -pressure methanol synthesis. Chem. Eng. Sci. 45(4), 773-783. DOI: 10.1016/0009-2509(90)85001-T.10.1016/0009-2509(90)85001-TSearch in Google Scholar

20. Graaf, G.H., Stamhuis, E.J. & Beenackers, A.A.C.M. (1988). Kinetics of the low-pressure methanol synthesis. Chem. Eng. Sci. 43(12), 3185-3195. DOI: 10.1016/0009-2509(88)85127-3.10.1016/0009-2509(88)85127-3Search in Google Scholar

21. Patterson, A.L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56(10), 978-982. DOI: 10.1103/PhysRev.56.978.10.1103/PhysRev.56.978Search in Google Scholar

22. Aris, R. (1995). On shape factors for irregular particles-I: The steady state problem. Diffusion and reaction. Chem. Eng. Sci. 50(24), 3899-3903. DOI: 10.1016/0009-2509(96)81819-7.10.1016/0009-2509(96)81819-7Search in Google Scholar

23. Luss, D. & Amundson, N.R. (1967). On a conjecture of Aris: proof and remarks. AlChE J. 13(4), 759-763. DOI: 10.1002/aic.690130431.10.1002/aic.690130431Search in Google Scholar

24. Fogler, H.S. (2005). Elements of Chemical Reaction Engineering. New Jersey, USA: Prentice-Hall International Inc.Search in Google Scholar

25. Wheeler, A. (1950). Reac tion rate and selectivity in catalyst pores (pp. 249-327). Adv. Catal.. Vol. New York, USA: Academic Press Inc.Search in Google Scholar

26. Mason, E.A., Malinauskas, A.P. & Evans, R.B. (1967). Flow and diffusion of gases in porous media. J. Chem. Phys. 46, 3199-3216. DOI: 10.1063/1.1841191.10.1063/1.1841191Search in Google Scholar

27. Zhu, B.C. (2001). Chemical Reaction Engineering. Beijing, China: Chemical Industry Publishing Company. (Chinese reference)Search in Google Scholar

28. Reid, R.C., Prausnitz, J.M. & Poling, B.E. (1987). The p roperties of gases and liquids. New York, USA: McGraw Hill Book Co.Search in Google Scholar

29. Curtiss, C.F. & Hirschfelder, J.O. (1949). Transport properties of multicomponent gas mixture. J. Chem. Phys. 17, 553-555. DOI: 10.1063/1.1747319.10.1063/1.1747319Search in Google Scholar

30. Fuller, E.N., Schettler, P.D. & Giddings, J.C. (1966). A new method for prediction of binary gas-phase diffusion coeffi- cients. Ind. Eng. Chem. 58(5), 18-27. DOI: 10.1021/ie50677a007.10.1021/ie50677a007Search in Google Scholar

31. Shah, R.K. & London, A.L. (1978). Laminar Flow Forced Convection in Ducts. New York, USA: Academic Press.Search in Google Scholar

32. Chen, J., Yang, H., Wang, N., Ring, Z. & Dabros, T. (2008). Mathematical modeling of monolith catalysts and reactors for gas phase reactions. Appl. Catal. A. 345(1), 1-11. DOI: 10.1016/j.apcata.2008.04.010.10.1016/j.apcata.2008.04.010Search in Google Scholar

33. Kim, D.H. & Lee, J. (2004). A robust iterative method of computing effectiveness factors in porous catalysts. Chem. Eng. Sci. 59(11), 2253-2263. DOI: 10.1016/j.ces.2004.01.056.10.1016/j.ces.2004.01.056Search in Google Scholar

34. Lee, J. & Kim, D.H. (2005). An im proved shooting method for computation of effectiveness factors in porous catalysts. Chem. Eng. Sci. 60(20), 5569-5573. DOI: 10.1016/j. ces.2005.05.027. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering