Cite

1. Malaysian Timber Industry Board. (2012). Retrieved 1-12-2013 from http://www.mtib.gov.mySearch in Google Scholar

2. Ong, H.R., Prasad, D.M.R., Khan, M.R., Rao, D.S., Jeyaratnam, N. & Raman, D.K. (2012). Effect of Jatropha Seed Oil Meal and Rubber Seed Oil Meal as Melamine Urea Formaldehyde Adhesive Extender on the Bonding Strength of Plywood. J. Appl. Sci. 12(11), 1148-1153. DOI: 10.3923/ jas.2012.1148.1153.10.3923/jas.2012.1148.1153Search in Google Scholar

3. Ong, H.R., Prasad, R., Khan, M.M.R. & Chowdhury, M.N.K. (2012). Effect of palm kernel meal as melamine urea formaldehyde adhesive extender for plywood application: Using a Fourier Transform Infrared Spectroscopy (FTIR) study. Appl. Mech. Mater. 121-126, 493-498. DOI: 10.4028/www.scientific. net/AMM.121-126.493.Search in Google Scholar

4. Zhang, Y., Zhu, W., Lu, Y., Gao, Z. & Gu, J. (2013). Water-Resistant Soybean Adhesive for Wood Binder Employing Combinations of Caustic Degradation, Nano-Modification, and Chemical Crosslinking. BioResour. 8(1), 1283-1291.10.15376/biores.8.1.1283-1291Search in Google Scholar

5. International Agency for Research on Cancer Press. (2004).Search in Google Scholar

6. Dongbin, F. & An, M. (2006). Curing Characteristics of Low Molar Ratio Urea-Formaldehyde Resins. J. Adhes. Interface 7(4), 45-52.Search in Google Scholar

7. Kim, S., Kim, H.J., Kim, H.S. & Lee, H.H. (2006). Effect of Bio-Scavengers on the Curing Behavior and Bonding Properties of Melamine-Formaldehyde Resins. Macromol. Mater. Eng. 291(9), 1027-1034. DOI: 10.1002/mame.200600213.10.1002/mame.200600213Search in Google Scholar

8. Que, Z., Furuno, T., Katoh, S. & Nishino, Y. (2007). Effects of urea-formaldehyde resin mole ratio on the properties of particleboard. Build. Environ. 42(3), 1257-1263. DOI: 10.1016/j. buildenv.2005.11.028.Search in Google Scholar

9. Mao, A., Hassan, E.B. & Kim, M.G. (2013). Investigation of Low Mole Ratio UF and UMF Resins Aimed at Lowering the Formaldehyde Emission Potential of Wood Composite Boards. BioResour. 8(2), 2453-2469.10.15376/biores.8.2.2453-2469Search in Google Scholar

10. Pizzi, A. (1994). Advanced wood adhesives technology. CRC Press.10.1201/9781482293548Search in Google Scholar

11. Hojilla-Evangelista, M.P. (2010). Adhesion properties of plywood glue containing soybean meal as an extender. J. Am. Chem. Soc. 87(9), 1047-1052. DOI: 10.1007/s11746-010-1586-x.10.1007/s11746-010-1586-xSearch in Google Scholar

12. Hojilla-Evangelista, M.P. & Bean, S.R. (2011). Evaluation of sorghum flour as extender in plywood adhesives for sprayline coaters or foam extrusion. Ind. Crops Prod. 34(1), 1168-1172. DOI: 10.1016/j.indcrop.2011.04.005.10.1016/j.indcrop.2011.04.005Search in Google Scholar

13. Zhang, J.L., Chen, H.X., Ke, C.M., Zhou, Y., Lu, H.Z. & Wang, D.L. (2012). Graft polymerization of styrene onto waste rubber powder and surface characterization of graft copolymer. Polym. Bull. 68(3), 789-801. DOI: 10.1007/s00289-011-0586-9.10.1007/s00289-011-0586-9Search in Google Scholar

14. Wu, W.L. & Zhang, J. (2013). Preparation and Characterization on an Environment Friendly Used Rubber Powder Modified Pulp Sediments Composites. Adv. Mater. Res. 602, 1111-1115. DOI: 10.1007/s13726-012-0083-5.10.1007/s13726-012-0083-5Search in Google Scholar

15. Marković, G., Veljković, O., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S. & Budinski-Simendić, J. (2013). Composites based on waste rubber powder and rubber blends: BR/CSM. Compos. Part B Eng. 45(1), 178-184. DOI: 10.1016/j.compositesb.2012.08.013.10.1016/j.compositesb.2012.08.013Search in Google Scholar

16. Al-Tayeb, M.M., Abu Bakar, B., Akil, H.M. & Ismail, H. (2012). Effect of partial replacements of sand and cement by waste rubber on the fracture characteristics of concrete. Polym. Plast. Technol. Eng. 51(6), 583-589. DOI: 10.1080/03602559.2012.659307.10.1080/03602559.2012.659307Search in Google Scholar

17. Wu, W. & Zhang, J. (2012). Preparation and characterization of environment friendly used rubber powder modified pulp sediments composites. Iran. Polym. J. 21(11), 763-769. DOI: 10.1007/s13726-012-0083-5.10.1007/s13726-012-0083-5Search in Google Scholar

18. Fan, P. & Lu, C. (2011). A Study on Functionalization of Waste Tire Rubber Powder Through Ozonization. J. Polym. Environ. 19(4), 943-949. DOI: 10.1007/s10924-011-0352-y.10.1007/s10924-011-0352-ySearch in Google Scholar

19. Bono, A., Yeo, K.B. & Siambun, N.J. (2003). Melamine- Urea-Formaldehyde (MUF) Resin: The Effect of the Number of Reaction Stages and Mole Ratio on Resin Properties. J. Teknol. 38(1), 43-54. DOI: 10.11113/jt.v38.508.10.11113/jt.v38.508Search in Google Scholar

20. Japanese Agricultural Standard for Plywood. (2003). MAFF, No.233 Ministry of Agriculture and Forestry.Search in Google Scholar

21. Nash, T. (1953). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55(3), 416.10.1042/bj0550416126929213105648Search in Google Scholar

22. Kim, S. & Kim, H.J. (2006). Study of miscibility of melamine- formaldehyde resin and poly (vinyl acetate) blends for use as adhesives in engineered flooring. J. Adhes. Sci. Technol. 20(2-3), 209-219. DOI: 10.1163/156856106775897739.10.1163/156856106775897739Search in Google Scholar

23. Tamez Uddin, M., Rukanuzzaman, M., Maksudur Rahman Khan, M. & Akhtarul Islam, M. (2009). Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. J. Environ. Manage. 90(11), 3443-3450. DOI: 10.1016/j. jenvman.2009.05.030.Search in Google Scholar

24. Minamisawa, M., Minamisawa, H., Yoshida, S. & Takai, N. (2004). Adsorption behavior of heavy metals on biomaterials. J. Agric. Food Chem. 52(18), 5606-5611. DOI: 10.1021/jf0496402.10.1021/jf049640215373400Search in Google Scholar

25. Soto, R., Freer, J. & Baeza, J. (2005). Evidence of chemical reactions between di-and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark. Bioresour. Technol. 96(1), 95-101. DOI: 10.1016/j.biortech.2003.05.006.10.1016/j.biortech.2003.05.00615364086Search in Google Scholar

26. Liu, X., Li, Z., Zhang, Q., Li, F. & Kong, T. (2012). Preparation of CuO/C core-shell nanowires and its application in lithium ion batteries. Mater. Lett. 80, 37-39. DOI: 10.1016/j. matlet.2012.04.054.Search in Google Scholar

27. Blanton, T.N. & Barnes, C.L. (2005). Quantitative analysis of calcium oxide desiccant conversion to calcium hydroxide using X-ray diffraction. Adv. X-ray Anal. 28, 45-51.Search in Google Scholar

28. Alexandre-Franco, M., Fernández-González, C., Alfaro- -Domínguez, M., Palacios Latasa, J.M. & Gómez-Serrano, V. (2010). Devulcanization and Demineralization of Used Tire Rubber by Thermal Chemical Methods: A Study by X-ray Diffraction. Energy Fuels 24(6), 3401-3409. DOI: 10.1021/ef901523t. 10.1021/ef901523tSearch in Google Scholar

29. Darmawan, S., Sofyan, K., Pari, G. & Sugiyanto, K. (2010). Effect of activated charcoal addition on formaldehyde emission of medium density fiberboard. J. For. Res. 7(2), 100-111.10.20886/ijfr.2010.7.2.100-111Search in Google Scholar

30. Kumar, A., Gupta, A., Sharma, K., Nasir, M. & Khan, T.A. (2013). Influence of activated charcoal as filler on the properties of wood composites. Int. J. Adhes. Adhes. 46, 34-39. DOI: 10.1016/j.ijadhadh.2013.05.017.10.1016/j.ijadhadh.2013.05.017Search in Google Scholar

31. Mansouri, H.R. & Pizzi, A. (2007). Recycled micronized polyurethane powders as active extenders of UF and PF wood panel adhesives. Holz als Roh und Werkstoff 65(4), 293-299. DOI: 10.1007/s00107-006-0168-y.10.1007/s00107-006-0168-ySearch in Google Scholar

32. Bono, A., Maizura, N., Salah, S. & Chiw, H.K. (2011). The Performance of Melamine-Urea-Formaldehyde Resin with Palm Kernel as Filler. Adv. Mater. Res. 233-235, 3-10. DOI: 10.4028/www.scientific.net/AMR.233-235.3.10.4028/www.scientific.net/AMR.233-235.3Search in Google Scholar

33. Babcock, G.E. & Smith, A.K. (1947). Extending phenolic resin plywood glues with proteinaceous materials. Ind. Eng. Chem. 39(1), 85-88. DOI: 10.1021/ie50445a029.10.1021/ie50445a029Search in Google Scholar

34. Qiao, L., Easteal, A.J., Bolt, C.J., Coveny, P.K. & Franich, R.A. (1999). The effects of filler materials on poly (vinyl acetate) emulsion wood adhesives. Pigment Resin Technol. 28(6), 326-330. DOI: 10.1108/03699429910302300.10.1108/03699429910302300Search in Google Scholar

35. Singh, A., Dawson, B., Rickard, C., Bond, J. & Singh, A. (2008). Light, confocal and scanning electron microscopy of wood-adhesive interface. Microsc. Anal. 22(3), 5-8.Search in Google Scholar

36. De Meijer, M., Thurich, K. & Militz, H. (1998). Comparative study on penetration characteristics of modern wood coatings. Wood Sci. Technol. 32(5), 347-365. DOI: 10.1007/ BF00702791.10.1007/BF00702791Search in Google Scholar

37. Kim, S., Kim, H.J., Xu, G.Z. & Eom, Y.G. (2007). Environment-friendly adhesives for fancy veneer bonding of engineered flooring to reduce formaldehyde and TVOC emissions. Mokchae Konghak 35(5), 58-66. Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering