Open Access

The effect of preparation method on the performance of PtSn/Al2O3 catalysts for acetic acid hydrogenation


Cite

1. Velu, S. & Santosh, K.G. (2008). A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ. Fuel. 22, 814-839. DOI: 10.1021/ef700411x.10.1021/ef700411xSearch in Google Scholar

2. Yoneda, N., Kusano, S., Yasui, M., Pujad, P. & Wilcher, S. (2001). Recent advances in processes and catalysts for the production of acetic acid. Appl. Catal. A: Gen. 221, 253-265. DOI: 10.1016/S0926-860X (01) 00800-6.Search in Google Scholar

3. Mahajan, S., Nickolas, Menzies, W.R. & Albrigh, L.F. (1977). Partial oxidation of light hydrocarbons. 1. Major differences noted in various tubular reactors. Ind. Eng. Chem. Proc.Des. Dev., 1977, 16(3), 271-274. DOI: 10.1021/i260063a003.10.1021/i260063a003Search in Google Scholar

4. Sidjabat, O. & Trimm, D.L. (2000). Nickel-magnesia catalysts for the steam reforming of light hydrocarbons. Top. Catal. 11-12(1-4), 279-282. DOI: 10.1023/A:1027212301077.10.1023/A:1027212301077Search in Google Scholar

5. Mahajan, S., Nickolas, D.M., Sherwood, F., Menzies, W.R. & Albrigh, L.F. (1977). Partial oxidation of light hydrocarbons. 2. New techniques for investigating surface reactions. Ind. Eng. Chem. Proc. Des. Dev., 16 (3): 275-278. DOI: 10.1021/ i260063a0045.Search in Google Scholar

6. Yarze, J.C. & Lockerbie, T.E. Catalytic steam reforming of light liquid hydrocarbons. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/04_1_CLEVELAND_0460_0078.pdfSearch in Google Scholar

7. Van Dyk, J.C., Keyser, M.J. & Coertzen, M. (2006). Syngas production from South African coal sources using Sasol- Lurgi gasifiers. Int. J. Coal Geol. 65, 243-253. DOI: 10.1016/j. coal.2005.05.007.Search in Google Scholar

8. Minchener, A.J. (2005). Coal gasification for advanced power generation. Fuel 84, 2222-2235. DOI: 10.1016/j. fuel.2005.08.035.Search in Google Scholar

9. Aly, M. & Baumgarten, E. (2001). Hydrogenation of hexanoic acid with different catalysts. Appl. Catal. A: Gen. 210, 1-12. DOI: 10.1016/S0926-860X(00)00791-2.10.1016/S0926-860X(00)00791-2Search in Google Scholar

10. Turek, T., Trim D.L. & Cant, N.W. (1994). The Catalytic hydrogenolysis of esters to alcohols. Catal. Rev. 36(4), 645-683. DOI: 10.1080/01614949408013931.10.1080/01614949408013931Search in Google Scholar

11. Rao, R., Dandekar, A., Baker, R.T.K. & Vannice, M.A. (1997). P roperties of copper chromite catalysts in hydrogenation reactions. J. Catal. 171, 406-419. DOI: 10.1006/jcat.1997.1832.10.1006/jcat.1997.1832Search in Google Scholar

12. Natal Santiago, M.A., Sánchez-Castillo, M.A., Cortright, R.D. & Dumesic, J.A. (2000). Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper. J. Catal. 193, 16-28. DOI:10.1006/jcat.2000.2883.10.1006/jcat.2000.2883Search in Google Scholar

13. Onyestyáka, G., Szabolcs Harnosa, S., Klébert, S., Stolcová, M., Kaszonyi, A. & Kalló, D. (2013). Selective reduction of acetic acid to ethanol over novel Cu2In/Al2O3 catalyst. Appl. Catal. A: Gen. 464-465, 313-321. DOI:1 0.1016/j. apcata.2013.05.042.10.1016/j.apcata.2013.05.042Search in Google Scholar

14. Pestman, R., Koster, R.M., Boellaard, E., van derKraan, A.M. & Ponec, V. (1998). Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalysts. J. Catal. 174, 142-152. DOI: 0021-9517/98.10.1006/jcat.1998.1957Search in Google Scholar

15. Pestman, R., van Duijne, A., Pieterse, J.A.Z. & Ponec, V. (1995). The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions. J. Mol. Catal. A: Chem. 103, 175-l80. DOI: 1381-1169/95.Search in Google Scholar

16. Pestman, R., Koster, R.M., Pieterse, J.A.Z. & Ponec, V. (1997). Reacti ons of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J. Catal. 168, 255-264. DOI: 10.1006/jcat.1997.1623.10.1006/jcat.1997.1623Search in Google Scholar

17. Rachmady, W. & Vannice, M.A. (2000). Acetic acid hydrogenation over supported platinum catalysts. J. Catal. 192, 322-334. DOI: 10.1006/jcat.2000.286.Search in Google Scholar

18. Rachmady, W. & Vannice, M.A. (2002). Acetic acid reduction by H2 over supported Pt catalysts: A DRIFTS and TPD/ TPR study. J. Catal. 207, 317-330. DOI: 10.1006/jcat.2002.3556.10.1006/jcat.2002.3556Search in Google Scholar

19. Alcala, R., Shabaker, J.W., Huber, G.W., Sanchez-Castillo, M.A. & Dumesic, J.A. (2005). Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. J. Phys. Chem. B. 109, 2074-2085. DOI: 10.1021/ jp049354t.10.1021/jp049354tSearch in Google Scholar

20. Hoang, D.L., Farrage, S.A-F., Radnik, J., Pohl, M-M., Schneider, M., Lieske, H. & Martin, A. (2007). A comparative study of zirconia and alumina supported Pt and Pt-Sn catalysts used for dehydrocyclization of n-octane. Appl. Catal. A: Gen. 333, 67-77. DOI: 10.1016/j.apcata.2007.09.003.10.1016/j.apcata.2007.09.003Search in Google Scholar

21. Siri, G.J., Ramallo-Lópezc, J.M., Casella, M.L., Fierrod, J.L.G., Requejo, F.G. & Ferretti, O.A. (2005). XPS and EXAFS study of supported PtSn catalysts obtained by surface organometallic chemistry on metals: Application to the isobutane dehydrogenation. Appl. Catal. A: Gen. 278, 239-249. DOI: 10.1016/j.apcata.2004.10.004.10.1016/j.apcata.2004.10.004Search in Google Scholar

22. Bocanegra, S.A., de Miguel, S.R., Borbath, I., Margitfalvi, J.L. & Scelza, O.A. (2009). Behavior of bimetallic PtSn/Al2O3 catalysts prepared by controlled surface reactions in the selective dehydrogenation of butane. J. Mol. Catal. A: Chem. 301, 52-60. DOI: 10.1016/j.molcata.2008.11.006.10.1016/j.molcata.2008.11.006Search in Google Scholar

23. de Miguel, S.R., Bocanegra, S.A., Julieta Vilella, I.M., Guerrero-Ruiz, A. & Scelza, O.A. (2007). Characterization and catalytic performance of PtSn catalysts supported on Al2O3 and Na-doped Al2O3in n-butane dehydrogenation. Catal. Lett. 119, 5-15. DOI: 10.1007/s10562-007-9215-5.10.1007/s10562-007-9215-5Search in Google Scholar

24. de Miguel, S.R., Román-Marínez, M.C., Jablonski, E.L., Fierro, J.L.G., Cazorla-Amorós, D. & Scelza, O.A. (1999). Characteri zation of bimetallic PtSn catalysts supported on purified and H2O2-functionalized carbons used for hydrogenation reactions. J. Catal. 184, 514-525. DOI: 10.1006/jcat.1999.2457.10.1006/jcat.1999.2457Search in Google Scholar

25. Coloma, F., Sepfilveda-Escribano, A., Fierro, J.L.G. & Rodriguez-Reinoso, F. (1996). Crotonalde hyde hydrogenation over bimetallic Pt-Sn catalysts supported on pregraphitized carbon black: Effect of the Sn/Pt atomic ratio. Appl. Cata l. A: Gen. 136, 231-248. DOI: 10.1016/0926-860X(95)00259-6.10.1016/0926-860X(95)00259-6Search in Google Scholar

26. Coloma, F., Sepfilveda-Escribano, A., Fierro, J.L.G. & Rodriguez-Reinoso, F. (1996). Crotonaldehyde hydrogenation over bimetallic Pt-Sn catalysts supported on pregraphitized carbon black: Effect of the preparation method. Appl. Catal. A: Gen. 148, 63-80. DOI: 10.1016/S0926-860X(96)00218-9.10.1016/S0926-860X(96)00218-9Search in Google Scholar

27. Homs, N., Llorca, J., de la Piscina, P.R., Francisco Rodríguez- Reinoso, F., Sepúlveda-Escribano, A. & Silvestre-Albero, J. (2001). Vapour phase hydrogenation of crotonaldehyde over magnesia-supported platinum tin catalysts. Phys. Chem. Chem. Phys. 3, 1782-1788. DOI: 10.1039/b100770j.10.1039/b100770jSearch in Google Scholar

28. Vilella, I.M.J., de Miguel, S.R., de Lecea, C.S-M., Linares- Solano, Á. & Scelza, O.A. (2005). Catalytic performance in citral hydrogenation and characterization of PtSn catalysts supported on activated carbon felt and powder. Appl. Catal. A: Gen. 281, 247-258. DOI: 10.1016/j.apcata.2004.11.034.10.1016/j.apcata.2004.11.034Search in Google Scholar

29. Vu, B.K., Song, M.B., Ahn, I.Y., Suh, Y-W., Suh, D.J., Kim, W-I., Koh, H-L., Choi, Y.G. & Shin, E.W. (2011). Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal. A: Gen. 400, 25-33. DOI: 10.1016/j.apcata.2011.03.057.10.1016/j.apcata.2011.03.057Search in Google Scholar

30. Ricardo, M., Luis, M., Aura, L. & Francisco, Z. (2005). Characterization of bifunctional PtSn/H[Al]ZSM5 catalysts: a comparison between two impregnation strategies. J. Mol. Catal. A: Chem. 228, 227-232. DOI: 10.1016/j.molcata.2004.09.036.10.1016/j.molcata.2004.09.036Search in Google Scholar

31. Pakornphant, C., Sumaeth, C. & Johannes, S. (2004). Temperature-programmed desorption of methanol and oxidation of methanol on Pt-Sn/Al2O3 catalysts. J. Chem. Eng. 97, 161-171. DOI: 10.1016/S1385-8947(03)00178-5.10.1016/S1385-8947(03)00178-5Search in Google Scholar

32. Ruiz-Martínez, J., Sepúlveda-Escribano, A., Anderson, J.A. & Rodríguez-Reinoso, F. (2007). Infl uence of the preparation method on the catalytic behavior of PtSn/TiO2 catalysts. Catal. Today. 123, 235-244. DOI: 10.1016/j.cattod.2007.02.013.10.1016/j.cattod.2007.02.013Search in Google Scholar

33. Luciene, S.C., Patricio, R., Gina, P., Nora, F., Carlos, L.P. & Maria do, C.R. (2001). Effect of the solvent used during preparation on the properties of Pt/Al2O3 and Pt-Sn/Al2O3 catalysts. Ind. Eng. Chem. Res. 40, 5557-5563. DOI: 10.1021/ ie000939t.10.1021/ie000939tSearch in Google Scholar

34. Zhang, K., Zhang, H.T., Ma, H.F., Ying, W.Y. & Fang, D.Y. (2014). Effect of Sn addition in gas phase hydrogenation of acetic acid on alumina supported PtSn catalysts. Catal. Lett. 144, 691-701. DOI: 10.1007/s10562-014-1210-z. 10.1007/s10562-014-1210-zSearch in Google Scholar

35. Armendáriz, H., Guzmán. A., Toledo, J.A., Llanos, M.E., Vázquez, A. & Aguilar-Ríos, G. (2001). Isopentane dehydrogen ation on Pt-Sn catalysts supported on Al-Mg-O mixed oxides: effect of Al/Mg atomic ratio. Appl. Catal. A: Gen. 211, 69-80. DOI: 10.1016/S0926-860X(00)00836-X.10.1016/S0926-860X(00)00836-XSearch in Google Scholar

36. Ballarini, A.D., de Miguel, S.R., Castro, A.A. & Scelza, O.A. (2013). n-Decane dehydrogenation on Pt, PtSn and PtGe supported on pinels prepared by different methods of synthesis. Appl. Catal. A: Gen. 467, 235-245. DOI: 10.1016/j. apcata.2013.07.03.Search in Google Scholar

37. Margitfalvi, J.L., Tompos, A., Kolosova, I. & Valyon, J. (1998). Reaction induced selectivity improvement in the hydrogenation of crotonaldehyde over Sn-Pt/SiO2 catalysts. J. Catal. 174, 246-249. DOI: 0021-9517/98.10.1006/jcat.1998.1966Search in Google Scholar

38. Yu, C.L., Ge, Q.J., Xu, H.Y. & Li, W.Z. (2006). Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene. Appl. Catal. A: Gen. 315, 58-67. DOI: 10.1016/j.apcata.2006.08.038.10.1016/j.apcata.2006.08.038Search in Google Scholar

39. Arteaga, G.J., Anderson, J.A. & Rochester, C.H. (1999). FTIR study of CO adsor ption on coked Pt-Sn/Al2O3 catalysts. Catal. Lett. 58, 189-194. DOI: 10.1023/A: 1019023210896.Search in Google Scholar

40. Riguetto, B.A., Damyanova, S., Gouliev, G., Marques, C.M.P., Petrov, L. & Bueno, J.M.C. (2004). Surface behavior of alumina-supported Pt catalysts modified with cerium as revealed by X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy of CO adsorption. J. Phys. Chem. B. 108, 5349-5358. DOI: 10.1021/jp031167s. 10.1021/jp031167sSearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering