Open Access

The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review


Cite

1. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A. 2005 9;102(32):11131-6;10.1073/pnas.0504878102118358216061801Search in Google Scholar

2. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 1995;27(6):583-96;10.1007/BF021116568746845Search in Google Scholar

3. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):1005-28;10.1152/ajplung.2000.279.6.L100511076791Search in Google Scholar

4. Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30(2):145-58;Search in Google Scholar

5. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26;10.1007/s12291-014-0446-0431083725646037Search in Google Scholar

6. Neuzil J, Gebicki JM, Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 1993;293:601-6;10.1042/bj293060111344088352726Search in Google Scholar

7. Macario AJL, Conway de Macario E. Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 2007;12:2588-600;10.2741/225717127265Search in Google Scholar

8. Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986;55:1151-1191;10.1146/annurev.bi.55.070186.0054432427013Search in Google Scholar

9. M.P. Mayer, B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci. 2005;62:670-684;10.1007/s00018-004-4464-6277384115770419Search in Google Scholar

10. Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T. Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 2010;80:920-31;10.1016/j.bcp.2010.05.02520513440Search in Google Scholar

11. Jee H. Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil. 2016;12(4):255-9;10.12965/jer.1632642.321503138327656620Search in Google Scholar

12. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 2002;22:1547-1559;10.1161/01.ATV.0000029720.59649.50Search in Google Scholar

13. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37;10.1093/eurheartj/ehr304Search in Google Scholar

14. Dennog C, Radermacher P, Barnett YA, Speit G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat Res. 1999;428 (1-2):83-9;10.1016/S1383-5742(99)00034-4Search in Google Scholar

15. Ueng SW, Yuan LJ, Lin SS, Niu CC, Chan YS, Wang IC, Yang CY, Chen WJ. Hyperbaric oxygen treatment prevents nitric oxide-induced apoptosis in articular cartilage injury via enhancement of the expression of heat shock protein 70. J Orthop Res. 2013;31(3):376-84;10.1002/jor.2223522991091Search in Google Scholar

16. Ni XX, Ni M, Fan DF, Sun Q, Kang ZM, Cai ZY, Liu Y, Liu K, Li RP, Xu WG. Heat-shock protein 70 is involved in hyperbaric oxygen preconditioning on decompression sickness in rats. Exp Biol Med (Maywood). 2013;238(1):12-22;10.1258/ebm.2012.01210123479759Search in Google Scholar

17. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990;15:393;10.1247/csf.15.3932085852Search in Google Scholar

18. Ghosh A, Chawla-Sarkar M, Stuehr DJ. Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 2011;25:2049-60;10.1096/fj.10-180554310102721357526Search in Google Scholar

19. Huang G, Diao J, Yi H, Xu L, Xu J, Xu W. Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons. Redox Biol. 2016;10:108-118;10.1016/j.redox.2016.09.011505426627721085Search in Google Scholar

20. Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2008;10:1767-1812;10.1089/ars.2008.204318576916Search in Google Scholar

21. S. Tsuchihashi, C. Fondevila, J.W. Kupiec-Weglinski, Heme oxygenase system in ischemia and reperfusion injury, Ann. Transplant. 9 (2004) 84-87;Search in Google Scholar

22. Huang G, Xu J, Xu L, Wang S, Li R, Liu K, Zheng J, Cai Z, Zhang K, Luo Y, Xu W. Hyperbaric oxygen preconditioning induces tolerance against oxidative injury and oxygen-glucose deprivation by up-regulating heat shock protein 32 in rat spinal neurons. PLoS One. 2014;9(1):e85967;10.1371/journal.pone.0085967389500924465817Search in Google Scholar

23. Lin CD, Wei IH, Lai CH, Hsia TC, Kao MC, Tsai MH, Wu CH, Tsai MH. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase. BMC Neurosci. 2011;12:21;10.1186/1471-2202-12-21Search in Google Scholar

24. Cabigas BP, Su J, Hutchins W, Shi Y, Schaefer RB, Recinos RF, Nilakantan V, Kindwall E, Niezgoda JA, Baker JE. Hyperoxic and hyperbaricinduced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res. 2006;72(1):143-51;10.1016/j.cardiores.2006.06.031Search in Google Scholar

25. Chavko M, Auker CR, McCarron RM. Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide. 2003;9(1):18-23;10.1016/S1089-8603(03)00045-4Search in Google Scholar

26. Baynosa RC, Naig AL, Murphy PS, Fang XH, Stephenson LL, Khiabani KT, Wang WZ, Zamboni WA. The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J Surg Res. 2013;183(1):355-61;10.1016/j.jss.2013.01.00423485074Search in Google Scholar

27. Alcaraz-García MJ, Albaladejo MD, Acevedo C, Olea A, Zamora S, Martínez P, Parra S. Effects of hyperoxia on biomarkers of oxidative stress in closed-circuit oxygen military divers. J Physiol Biochem. 2008;64(2):135-41;10.1007/BF0316824119043983Search in Google Scholar

28. Ferrer, M.D., Sureda, A., Batle, J.M., Tauler, P., Tur, J.A., Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytesand neutrophils. Free Radic Res, 2007,41:274-281;10.1080/1071576060108037117364955Search in Google Scholar

29. Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. 2009;61(4):310-8;10.1016/j.addr.2009.02.00319248813Search in Google Scholar

30. Kaźmierczuk A. Kiliańska ZM. Plejotropowa aktywność białek szoku cieplnego. Postepy Hig Med. Dosw. 2009;63:502-521;Search in Google Scholar

31. Takayama S, Reed J, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003;22:9041-9047;10.1038/sj.onc.120711414663482Search in Google Scholar

32. Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 2007;581:3758-3769;10.1016/j.febslet.2007.05.04017559840Search in Google Scholar

33. Reeg S, Jung T, Castro JP, Davies KJ, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153-166;10.1016/j.freeradbiomed.2016.08.002520114127498116Search in Google Scholar

34. Daugaard M, Rohde M, JäätteläM. The heat shockk proteinę 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007;581:3702-3710;10.1016/j.febslet.2007.05.03917544402Search in Google Scholar

35. S.H. Park, N.Bolender, F.Eisele, Z.Kostova, J.Takeuchi, P.Coffino, et al. The Cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol. Biol. Cell 2007,18(1):153-165;10.1091/mbc.e06-04-0338175131217065559Search in Google Scholar

36. M. Conconi, I.Petropoulos, I.Emod, E.Turlin, F.Biville, B.Friguet, Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem. J. 1998,333:407-415;10.1042/bj333040712195999657982Search in Google Scholar

37. Laskowska E. Small heat shock proteins - their role in apoptosis, carcinogenesis and diseaes connected with protein aggregation. Post. Biochem. 2007;53:19-26;Search in Google Scholar

38. Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal. 2005;7:414-422;10.1089/ars.2005.7.41415706088Search in Google Scholar

39. Seixas E, Gozzelino R, Chora A, Ferreira A, Silva G, Larsen R, Rebelo S, Penido C, Smith NR, Coutinho A, Soares MP. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc Natl Acad Sci USA 2009;106:15837-15842;10.1073/pnas.0903419106272810919706490Search in Google Scholar

40. Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP, Cunha-Rodrigues M, Portugal S, Soares MP, Mota MM. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 2007;13:703- 710;10.1038/nm158617496899Search in Google Scholar

41. Arai Y, Kubo T, Kobayashi K, et al. Adenovirus vector mediated gene transduction to chondrocytes: in vitro evaluation of therapeutic efficacy of transforming growth factor beta 1 and heat shock protein 70 gene transduction. J Rheumatol 1997;24:1787-1795;Search in Google Scholar

42. Lechner M., Lirk P., Rieder J.: Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 2005;15:277-289;10.1016/j.semcancer.2005.04.00415914026Search in Google Scholar

43. Ferrer, M.D., Sureda, A., Batle, J.M., Tauler, P., Tur, J.A., Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytesand neutrophils. Free Radic Res, 2007,41:274-281;10.1080/1071576060108037117364955Search in Google Scholar

44. Potter CF, Kuo NT, Farver CF, McMahon JT, Chang CH, Agani FH, Haxhiu MA, Martin RJ. Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups. Pediatr Res. 1999;45(1):8-13;10.1203/00006450-199901000-000039890602Search in Google Scholar

45. Hoehn T, Felderhoff-Mueser U, Maschewski K, Stadelmann C, Sifringer M, Bittigau P, Koehne P, Hoppenz M, Obladen M, Bührer C. Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain. Pediatr Res. 2003;54(2):179-84;10.1203/01.PDR.0000075220.17631.F112761356Search in Google Scholar

46. Moncada S., Higgs A.E. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993;329:2002-2012;10.1056/NEJM1993123032927067504210Search in Google Scholar

47. Sokołowska M, Włodek L. Dobre i złe strony tlenku azotu. Folia Cardiol 2001;8(5):467-477;Search in Google Scholar

48. Xu F, Tai Fai F, Yung E, Yang M, A YIN J. Endothelial and inducible nitric oxide synthase gene and protein expression in hyperoxia-induced lung injury in premature rat. Acta Pharmacol Sin 2002;(23 Suppl):52-58.Search in Google Scholar