Open Access

Reactive oxygen radicals – the therapeutic effectiveness of antioxidants


Cite

1. Nathan C. Specifity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 2003; 111: 769-778, DOI 10.1172/JCI200318174;10.1172/JCI200318174Search in Google Scholar

2. Bartosz G. Druga twarz tlenu. Wolne rodniki w przyrodzie. Wyd. 2 zm. Warszawa: Wydawnictwo Naukowe PWN 2004. Polish [Second face of oxygen. Free radical in nature];Search in Google Scholar

3. Ponczek M.B., Wachowicz B.: Oddziaływanie reaktywnych form tlenu i azotu z białkami. Post. Biochem. 2004; 51: 140–145. Polish [Interaction of reactive oxygen and nitrogen species with proteins];Search in Google Scholar

4. Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med.2004; 25: 17-26, DOI 10.1016/j.mam.2004.02.005;10.1016/j.mam.2004.02.005Search in Google Scholar

5. Dröge W. Free radicals in the physiology control of cell function. Physiol. Rev. 2002; 82: 47-95, DOI 10.1152/physrev.00018.2001;10.1152/physrev.00018.2001Search in Google Scholar

6. Das KC, White CW. Redox system of the cell: possible links and implications. Proc. Nat. Acad. Sci. USA. 2002; 99:9617-9618, DOI 10.1073/pnas.162369199;10.1073/pnas.162369199Search in Google Scholar

7. Pratico D. Alzheimer’s disease and oxygen radicals: new insights. Biochem. Pharmacol. 2002; 63: 563-567, DOI 10.1016/S0006-2952(01)00919-4;10.1016/S0006-2952(01)00919-4Search in Google Scholar

8. Perry G, Nunomura A, Hirai K, Znu X, Perez M, Avila J et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free radic Biol Med 2002; 33: 1475-1479, DOI 10.1016/S0891-5849(02)01113-9;10.1016/S0891-5849(02)01113-9Search in Google Scholar

9. Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles, and their reactions with DNA and protein. I. Clin. Invest.2003; 111: 583-593, DOI: 10.1172/JCI200318022;Search in Google Scholar

10. Valko M, Leibfritz D, Mancol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol.2007; 39: 44-84, DOI 10.1016/j.biocel.2006.07.001;10.1016/j.biocel.2006.07.001Search in Google Scholar

11. Zabłocka A, Janusz M. Dwa oblicza wolnych rodników tlenowych. Post Hig Med. Dosw.2008; 62: 118-124, Polish [The two faces of reactive oxygen species];Search in Google Scholar

12. Karpińska A., Gromadzka G. Stres oksydacyjny I naturalne mechanizmy antyoksydacyjne-znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Post Hig Med Dosw 2013; 67:43-53, Polish [Oxidative stress and natural antioxidant mechanisms: the role in neurodegeneration. From molecular mechanisms to therapeutic strategies];10.5604/17322693.1029530Search in Google Scholar

13. Gutowicz M. Wpływ reaktywnych form tlenu na ośrodkowy układ nerwowy. Post Hig Med Dosw 2011; 65: 104-113, Polish [The influence of reactive oxygen species on the central nervous system];10.5604/17322693.933486Search in Google Scholar

14. Fang YZ, Yang S, Wu G. Free radical, antioxidants and nutrition. Nutrition 2002; 18:872-879, DOI: 10.1016/S0899-9007(02)00916-4;Search in Google Scholar

15. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 2006; 97:1634-1658, DOI: 10.1111/j.1471-4159.2006.03907.x;Search in Google Scholar

16. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta. 2003; 333:19-39, DOI 10.1016/S0009-8981(03)00200-6;10.1016/S0009-8981(03)00200-6Search in Google Scholar

17. Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol. 2015; 45(9):765-98. DOI 10.3109/10408444.2015.1074159;10.3109/10408444.2015.107415926610815Search in Google Scholar

18. Gregório BM, De Souza DB, de Morais Nascimento FA, Pereira LM, Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr Pharm Des. 2015; 22: 859 - 869 DOI 10.2174/1381612822666151209152352;10.2174/138161282266615120915235226648468Search in Google Scholar

19. Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med. 2015; 2:29. DOI 10.3389/fcvm.2015.00029;10.3389/fcvm.2015.00029467134426664900Search in Google Scholar

20. Simone CB, Simone NL, Simone V, Simone CB. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part 1. Altern Ther Health Med. 2007;13(1):22-28;Search in Google Scholar

21. Miyanishi K, Hoki T, Tanaka S, Kato J. Prevention of hepatocellular carcinoma: Focusing on antioxidant therapy. World J Hepatol. 2015; 7(3):593-9. doi: 10.4254/wjh.v7.i3.593;Search in Google Scholar

22. Martinez-Outschoorn UE, Balliet R, Lin Z, Whitaker-Menezes D, Birbe RC, Bombonati A, et al.. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies. Cell Cycle. 2012; 11(23):4402-13. doi: 10.4161/cc.22776;Search in Google Scholar

23. Wambi C, Sanzari J, Wan XS, Nuth M, Davis J, Ko YH, et al. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation. Radiat Res. 2008; 169(4): 384–396, DOI 10.1667/RR1204.1;10.1667/RR1204.1269223618363433Search in Google Scholar

24. Brown SL, Kolozsvary A, Liu J, Jenrow KA, Ryu S, Kim JH. Antioxidant Diet Supplementation Starting 24 Hours after Exposure Reduces Radiation Lethality. Radiat Res. 2010; 173(4): 462–468, DOI 10.1667/RR1716.1;10.1667/RR1716.1287493420334518Search in Google Scholar

25. Rafieian-Kopaie M, Nasri H. On the Occasion of World Cancer Day 2015; the Possibility of Cancer Prevention or Treatment with Antioxidants: The Ongoing Cancer Prevention Researches. Int J Prev Med. 2015; 6: 108, DOI 10.4103/2008-7802.169077;10.4103/2008-7802.169077467117526644907Search in Google Scholar

26. Reliene R, Schiestl RH. Experimental antioxidant therapy in ataxia telangiectasia. Clin Med Oncol. 2008; 2:431-436;10.4137/CMO.S535316169521892312Search in Google Scholar

27. Reichenbach J, Schubert R, Schwan C, Müller K, Böhles HJ, Zielen S. Anti-oxidative capacity in patients with ataxia telangiectasia. Clin Exp Immunol. 1999; 117(3): 535–539, DOI 10.1046/j.1365-2249.1999.01000.x;10.1046/j.1365-2249.1999.01000.x190535810469059Search in Google Scholar

28. Peyser CE, Folstein M, Chase GA, Starkstein S, Brandt J, Cockrell JR, et al. Trial of d-alpha-tocopherol in Huntington’s disease. Am J Psychiatry. 1995; 152(12):1771-5, DOI 10.1176/ajp.152.12.1771;10.1176/ajp.152.12.17718526244Search in Google Scholar

29. Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta. 2014; 1842(8): 1282–1294, DOI 10.1016/j.bbadis.2013.09.007;10.1016/j.bbadis.2013.09.007396156124060637Search in Google Scholar

30. Underwood BR, Imarisio S, Fleming A, Rose C, Krishna G, Heard P, et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum Mol Genet. 2010; 19(17): 3413–3429, DOI 10.1093/hmg/ddq253;10.1093/hmg/ddq253291670920566712Search in Google Scholar

31. Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. Med Cell Longev. 2016; 2016: 6719534, DOI 10.1155/2016/6719534.Search in Google Scholar