Cite

1. World Health Organization. (1974). Safe Drinking Water Quality Act Public Law 93-523. U.S. Government Printing Office.Search in Google Scholar

2. World Health Organization. (2004). Guidelines for drinking-water quality. Vol. 1. Recommendations. Geneva: WHO.Search in Google Scholar

3. Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian J. Environ. Health, 42, 28–39.Search in Google Scholar

4. Weerasooriya, S. V. R., & Dissanayake, C. B. (1992). Modelling the nitrosation kinetics in simulated natural environmental conditions. Toxicol. Environ. Chem., 36, 131–137.10.1080/02772249209357836Open DOISearch in Google Scholar

5. Guter, G. (1995). Nitrate removal from contaminated groundwater by anion exchange. In A. K. Sengupta (Ed.), Ion exchange technology: Advances in pollution control (pp. 61–113). Lancaster, PA: Technomic Publishing Co. Inc.Search in Google Scholar

6. Mercado, A., Libhaber, M., & Soares, M. I. M. (1988). In situ biological groundwater denitrification: Concepts and preliminary field tests. Water Sci. Technol., 20, 197–209.10.2166/wst.1988.0099Search in Google Scholar

7. Bhatnagar, A., & Sillanpaa, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J., 168(2), 493–504.10.1016/j.cej.2011.01.103Search in Google Scholar

8. Schoeman, J. J., & Styen, A. (2003). Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155, 15–26.10.1016/S0011-9164(03)00235-2Search in Google Scholar

9. Meile, L. J., & Johnson, A. J. (1983). Waste generation reduction – nitrate FY State Report. Trends in analytical chemistry. USA.Search in Google Scholar

10. Pintar, A., Bastista, J., & Levec, J. (2001). Catalytic denitrification: Direct and indirect removal of nitrates from potable water. Catal. Today, 66(2/4), 503–510.10.1016/S0920-5861(00)00622-2Search in Google Scholar

11. Urbain, V., Benoit, R., & Manem, J. (1996). Membrane bioreactor: a new treatment tool. J. Am. Water Works Assoc., 88, 75–86.10.1002/j.1551-8833.1996.tb06557.xSearch in Google Scholar

12. Rhodes, F. H., & Carty, J. T. (1925). The corrosion of certain metals by carbon tetrachloride. Ind. Eng. Chem., 17(9), 909–911.10.1021/ie50189a012Open DOISearch in Google Scholar

13. Murfy, A. P. (1991). Chemical removal of nitrate from water. Nature, 350, 223–225.10.1038/350223a0Search in Google Scholar

14. Young, G. K., Bungay, H. R., Brown, L. M., & Parson, W. A. (1964). Chemical reduction of nitrate in water. J. Water Pollut.Control Federation, 36, 395–398.Search in Google Scholar

15. Siantar, D. P., & Schreier, C. G. (1995). Transformation of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate by iron powder and by H2/Pd/Al2O3. In American Chemical Society National Meeting, Washington, DC, April 2–6, 1995. American Chemical Society.Search in Google Scholar

16. Ratnayake, S., Schild, D., Maczka, E., Jartych, E., Luetzenkirchen, J., Kosmulski, M., Makehelwala, M., Weragoda, S. K., Bandara, A., Wijayawardana, R., Chandrajith, R., Indrarathne, S. P., & Weerasooriya, R. (2016). A novel radiation-induced grafting methodology to synthesize stable zerovalent iron naoparticles at ambient atmospheric conditions. Colloid Polym. Sci., 294(10), 1557–1569.10.1007/s00396-016-3894-7Search in Google Scholar

17. Atkins, P. W. (1986). Physical chemistry. Oxford University Press.Search in Google Scholar

18. Yang, G. C. C., & Lee, H. -L. (2005). Chemical reduction of nitrate by nano-sized iron: Kinetics and pathways. Water Res., 39, 884–894.10.1016/j.watres.2004.11.03015743635Search in Google Scholar

19. Wang, W., Jin, Z., Li, T., Zhang, H., & Gao, S. (2006). Preparation of spherical iron nanoclusters in ethanolwater solution for nitrate removal. Chemosphere, 65, 1396–1404.10.1016/j.chemosphere.2006.03.075Open DOISearch in Google Scholar

20. Hwang, Y. K. (2011). Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater., 185, 1513–1521.10.1016/j.jhazmat.2010.10.078Search in Google Scholar

21. Choe, S., Chang, Y. -Y., Hwang, K. -Y., & Khim, J. (2000). Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 41, 1307–1311.10.1016/S0045-6535(99)00506-8Open DOISearch in Google Scholar

22. Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Garcia-Rubio, A., Gomez-Lahoz, C., & Vereda-Alonso, C. (2009). Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74(6), 804–809.10.1016/j.chemosphere.2008.10.02019041116Open DOISearch in Google Scholar

23. Ahn, S. C., Oh, S. -Y., & Cha, D. K. (2008). Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J. Hazard. Mater., 156(1/3), 17–22.10.1016/j.jhazmat.2007.11.10418179870Search in Google Scholar

24. Jiang, Z., Zhang, S., Pan, B., Wang, W., Wang, X., Lv, L., Zhang, W., & Zhang, Q. (2012). A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. J. Hazard. Mater., 233/234, 1–6.10.1016/j.jhazmat.2012.06.02522795842Search in Google Scholar

25. Jiang, Z., Lv, L., Zhang, W., Du, Q., Pan, B., Yang, L., & Zhang, Q. (2011). Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res., 45, 2191–2198.10.1016/j.watres.2011.01.00521316071Open DOISearch in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other