Cite

1. Magiera, T., Jabłońska, M., Strzyszcz, Z., & Rachwał, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ., 45, 281-290. DOI: 10.1016/j.atmosenv.2011.04.076.10.1016/j.atmosenv.2011.04.076Search in Google Scholar

2. Magiera, T., Gołuchowska, B., & Jabłońska, M. (2013). Technogenic magnetic particles in alkaline dusts from power and cement plants. Water Air Soil Pollution, 224, 1389(17pp.). DOI: 10.1007/s11270-012-1389-9.10.1007/s11270-012-1389-9354376923325986Search in Google Scholar

3. Rachwał, M., Magiera, T., & Wawer, M. (2015). Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere, 138, 863-873. DOI: 10.1016/j.chemosphere.2014.11.077.10.1016/j.chemosphere.2014.11.07725576132Search in Google Scholar

4. Szuszkiewicz, M., Magiera, T., Kapička, A., Petrovský, E., Grison, H., & Gołuchowska, B. (2015). Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland. J. Appl. Geophys., 116, 84-92. DOI: 10.1016/j.jappgeo.2015.02.027.10.1016/j.jappgeo.2015.02.027Search in Google Scholar

5. Heller, F., Strzyszcz, Z., & Magiera, T. (1998). Magnetic record of industrial pollution on forest soils of Upper Silesia (Poland). J. Geophys. Res., 103(B8), 17767-17774. DOI: 10.1029/98JB01667.10.1029/98JB01667Search in Google Scholar

6. Gupta, S., Dubikova, M., French, D., & Sahajwalla, V. (2007). Characterization of the origin and distribution of the minerals and phases in metallurgical cokes. Energy Fuels, 21, 303-313. DOI: 10.1021/ef060437d.10.1021/ef060437dSearch in Google Scholar

7. Vaughan, D. J., Pattrick, R. A. D., & Wogelius, R. A. (2002). Minerals, metals and molecules: ore and environmental mineralogy in the new millennium. Mineral. Mag., 66(5), 653-676. DOI:10.1180/0026461026650054.10.1180/0026461026650054Search in Google Scholar

8. Thompson, R., & Oldfi eld, F. (1986). Environmental magnetism. London: Allen and Unwin.10.1007/978-94-011-8036-8Search in Google Scholar

9. Rzepa, G., Bajda, T., Gaweł, A., Debiec, K., & Drewniak, L. (2016). Mineral transformations and textural evolution during roasting of bog iron ores. J. Therm. Anal. Calorim., 123(1), 615-630. DOI: 10.1007/s10973-015-4925-1.10.1007/s10973-015-4925-1Search in Google Scholar

10. Dearing, J. A. (1994). Environmental magnetic susceptibility - using the Bartington MS2 System. Kenilworth, England: Chi Publishing.Search in Google Scholar

11. Szumiata, T., Gawroński, M., Górka, B., Brzózka, K., Świetlik, R., Trojanowska, M., & Strzelecka, M. (2013). Chemical, magnetic and Mössbauer effect analysis of road dust from expressway. Nukleonika, 58(1), 107-110.Search in Google Scholar

12. Szumiata, T., Gzik-Szumiata, M., Brzózka, K., Górka, B., Gawroński, M., Świetlik, R., & Trojanowska, M. (2015). Iron-containing phases in fl y ashes from different combustion systems. Nukleonika, 60(1), 151-154. DOI: 10.1515/nuka-2015-0030.10.1515/nuka-2015-0030Search in Google Scholar

13. Oh, S. J., Cook, D. C., & Townsend, H. E. (1998). Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfi ne Interact., 112, 59-65.10.1023/A:1011076308501Search in Google Scholar

14. Brett, M. E., & Graham, M. J. (1986). An electron back-scattering Mössbauer spectroscopy study of thin magnetite fi lms. J. Magn. Magn. Mater., 60, 175-181. DOI: 10.1016/0304-8853(86)90098-3.10.1016/0304-8853(86)90098-3Search in Google Scholar

15. Dézsi, I., Fetzer, Cs., Gombkötő, Á., Szűcs, I., Gubicza, J., & Ungár, T. (2008). Phase transition in nanomagnetite. J. Appl. Phys., 103, 104312-1-104312-5. DOI: 10.1063/1.2937252.10.1063/1.2937252Search in Google Scholar

16. Gorski, Ch. A., & Scherer, M. M. (2010). Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review. Am. Miner., 95, 1017-1026. DOI: 10.2138/am.2010.3435 1017.10.2138/am.2010.3435Search in Google Scholar

17. Da Costa, G. M., De Grave, E., Bowen, L. H., Vandenberghe, R. E., & De Bakker, P. M. A. (1994). The center shift in Mössbauer spectra of maghemite and aluminum maghemites. Clay Clay Min., 42(5), 628-633.10.1346/CCMN.1994.0420515Search in Google Scholar

18. Layek, S., Pandey, An., Pandey, Ash., & Verma, H. C. (2010). Synthesis of γ-Fe2O3 nanoparticles with crystallographic and magnetic texture. Int. J. Eng. Sci. Technol., 2(8), 33-39. DOI: dx.doi.org/10.4314/ijest.v2i8.63778.Search in Google Scholar

19. Haley, G., Mullen, J. G., & Honigt, J. M. (1989). First order change in hyperfi ne interaction at the Verwey transition in magnetite. Solid State Commun., 69(3), 285-287. DOI: 10.1016/0038-1098(89)90852-1.10.1016/0038-1098(89)90852-1Search in Google Scholar

20. Lee, S. W., Kim, S. J., & Kim, Ch. S. (2006). Superexchange interactions in MgFe2O4. J. Korean Phys. Soc., 48(4), 583-588.Search in Google Scholar

21. Omer, M. I. M., Elbadawi, A. A., & Yassin, O. A. (2013). Synthesis and structural properties of MgFe2O4 ferrite nano-particles. JAIS-J. Appl. Ind. Sci., 1(4), 20-23.Search in Google Scholar

22. Antao, S. M., Hassan, I., & Parise, J. B. (2005). Cation ordering in magnesioferrite, MgFe2O4, to 982°C using in situ synchrotron X-ray powder diffraction. Am. Miner., 90(1), 219-228. DOI: 10.2138/am.2005.1559.10.2138/am.2005.1559Search in Google Scholar

23. Leimalm, U., Lundgren, M., Ökvist, L. S., & Björkman, B. (2010). Off-gas dust in an experimental blast furnace; Part 1: Characterization of fl ue dust, sludge and shaft fi nes. ISIJ Int., 50(11), 1560-1569. DOI: doi.org/10.2355/isijinternational.50.1560.10.2355/isijinternational.50.1560Search in Google Scholar

24. Hafner, S., & Kalvius, M. (1966) The Mössbauer resonance of Fe57 in troilite (FeS) and pyrrhotite (Fe 0.88S). Z. Krist.-Cryst. Mater., 123, 443-458.Search in Google Scholar

25. Navarra, A., Graham, J. T., Somot, S., Ryan, D. H., & Finch, J. A. (2010). Mössbauer quantifi cation of pyrrhotite in relation to self-heating. Miner. Eng., 23, 652-658. DOI: 10.1016/j.mineng.2010.03.022.10.1016/j.mineng.2010.03.022Search in Google Scholar

26. Flanders, P. J. (1994). Collection, measurements and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931-5936.10.1063/1.355518Search in Google Scholar

27. Anshits, N. N., Vereshchagina, T. A., Bayukov, O. A., Salanov, A. N., & Anshits, A. G. (2005). The nature of nanoparticles of crystalline phases in cenospheres and morphology of their shells. Glass Phys. Chem., 31(3), 306-315.10.1007/s10720-005-0060-6Search in Google Scholar

28. Taneja, S. P. (2004). Mössbauer studies of thermal power plant coal and fl y ash. Hyperfi ne Interact., 153, 83-90.10.1023/B:HYPE.0000024715.55347.feSearch in Google Scholar

29. Ram, L. C., Tripathi, P. S. M., & Mishra, S. P. (1995). Mössbauer spectroscopic studies on the transformation of iron-bearing minerals during combustion of coals: Correlation with fouling and slagging. Fuel Process. Technol., 42, 47-60.10.1016/0378-3820(94)00111-6Search in Google Scholar

30. Bajukov, O. A., Anshits, N. N., Petrov, M. I., Balaev, A. D., & Anshits, A. G. (2009). Composition of ferrospinel phase and magnetic properties of microspheres and cenospheres from fl y ashes. Mater. Chem. Phys., 114, 495-503. DOI: 10.1016/j.matchemphys.2008.09.061.10.1016/j.matchemphys.2008.09.061Search in Google Scholar

31. Park, J. -Ch., Kim, D., Lee, Ch. -S., & Kim, D. -K. (1999). A new synthetic route to wüstite. Bull. Korean Chem. Soc., 20(9) 1005-1008.Search in Google Scholar

32. Jonczy, I., & Stanek, J. (2013). Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika, 58(1), 127-131.Search in Google Scholar

33. Vereš, J., Jakabský, Š., & Šepelák, V. (2010). Chemical, physical, morphological and structural characterization of blast furnace sludge. Diffusion Fundamentals, 12, 88-91.Search in Google Scholar

34. Wang, X., Zhu, M., Koopal, L. K., Li, W., Xu, W., Liu, F., Zhang, J., Liu, Q., Feng, X., & Sparks, D. L. (2016). Effects of crystallite size on the structure and magnetism of ferrihydrite. Environ.-Sci. Nano, 3, 190-202. DOI: 10.1039/c5en00191a.10.1039/C5EN00191ASearch in Google Scholar

35. Kukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., Smith, S. C., Dohnalkova, A. C., & Russell, C. K. (2003). Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am. Miner., 88, 1903-1914. DOI: 0003-004X/03/1112-1903$05.00.10.2138/am-2003-11-1233Search in Google Scholar

36. Michel, F. M., Ehm, L., Antao, S. M., Lee, L. P., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. A. A., Phillips, B. L., & Parise, J. B. (2007). The structure of ferrihydrite, a nanocrystalline material. Science, 316(5832), 1726-1729. DOI: 10.1126/science.1142525.10.1126/science.114252517525301Search in Google Scholar

37. Stevens, J. G., Khasanov, A. M., Miller, J. W., Pollak, H., & Li, Z. (2005). Mössbauer mineral handbook. Asheville, NC, USA: Mössbauer Effect Data Center, The University of North Carolina. Available from <https://www.mtholyoke.edu/courses/mdyar/data/MineralHandbook.pdf>. Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other