Open Access

Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia


Cite

1. Berry, C. C., & Curtis, A. S. G. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys., 36(13), 198-206.10.1088/0022-3727/36/13/203Search in Google Scholar

2. Subramanian, M., Miaskowski, A., Pearce, G., & Dobson, J. (2016). A coil system for real-time magnetic fluid hyperthermia microscopy studies. Int. J. Hyperthermia, 32(2), 112-120.10.3109/02656736.2015.1104732Search in Google Scholar

3. Chudzik, B., Miaskowski, A., Surowiec, Z., Czernel, G., Duluk, T., Marczuk, M., & Gagoś, M. (2016). Effectiveness of magnetic fl uid hyperthermia against Candida albicans cells. Int. J. Hyperthermia, 32(8), 842-857. http://dx.doi.org/10.1080/02656736.2016.1212277.10.1080/02656736.2016.1212277Search in Google Scholar

4. Wang, Z., & Cuschieri, A. (2013). Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int. J. Mol. Sci., 14, 9111-9125. DOI: 10.3390/ijms14059111.10.3390/ijms14059111Search in Google Scholar

5. Tieyu, C., Xing, P., & Henry, D. (2016). Construction of site-specifi c core-shell structured nanocomposite for pH-controlled drug delivery. J. Porous Mater., 23, 987-995. DOI: 10.1007/s10934-016-0156-5.10.1007/s10934-016-0156-5Search in Google Scholar

6. Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldöfner, N., Scholz, R., Deger, S., Wust, P., Loening, S. A., & Jordan, A. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperthermia, 21, 637-647. DOI: 10.1080/02656730500158360.10.1080/02656730500158360Search in Google Scholar

7. Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys., 109, 083921-1-083921-17. DOI: 10.1063/1.3551582.10.1063/1.3551582Search in Google Scholar

8. Liquids Research Limited. (2011). Available from http://liquidsresearch.com.Search in Google Scholar

9. MagneThermTM systems. Available from http://www.nanotherics.com.Search in Google Scholar

10. Wildeboer, R. R., Southern, P., & Pankhurs, Q. A. 2014). On the reliable measurement of specific bsorption rates and intrinsic loss parameters in magnetic perthermia materials. J. Phys. D-Appl. Phys., 47, 495003. DOI: 10.1088/0022-3727/47/49/495003.10.1088/0022-3727/47/49/495003Search in Google Scholar

11. Calero, M., Chiappi, M., Lazaro-Carrillo, A., Rodríguez, M. J., Chichón, F. J., Crosbie-Staunton, K., Prina-Mello, A., Volkov, Y., Villanueva, A., & Carrascosa, J. L. (2015). Characterization of interaction of magnetic nanoparticles with breast cancer cells. J. Nanobiotechnol., 13, 16. DOI: 10.1186/s12951-015-0073-9.10.1186/s12951-015-0073-9Search in Google Scholar

12. Williamson, G. K., & Hall, W. H. (1952). X-ray line broadening from fi led aluminium and wolfram. Acta Metallurgica, 1, 22-31. DOI: 10.1016/0001-6160(53)90006-6.10.1016/0001-6160(53)90006-6Search in Google Scholar

13. Kalska-Szostko, B., Zubowska, M., & Satuła, D. (2006). Studies of the magnetite nanoparticles by means of Mössbauer spectroscopy. Acta Phys. Pol. A, 109, 365-369.10.12693/APhysPolA.109.365Search in Google Scholar

14. Mørup, S., Hansen, M. F., & Frandsen, C. (2010). Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol., 1, 182-190. DOI: 10.3762/bjnano.1.22.10.3762/bjnano.1.22304591221977409Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other