Cite

1. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel. J. Am. Ceram. Soc., 82(12), 3279-3292. DOI: 10.1111/j.1151-2916.1999. tb02241.x.Search in Google Scholar

2. Amirkhanyan, L., Weissbach, T., Kortus, J., & Aneziris, Ch. G. (2013). On the possibility of hercynite formation in a solid state reaction at the Al2O3-iron interface: A density-functional theory study. Ceramics Int., 40(1, Pt. A), 257-262.Search in Google Scholar

3. Verwey, E. J. W., & Heilmann, E. L. (1947). Physical properties and cation arrangement of oxides with spinel structures. I. Cation arrangements in spinels. J. Chem. Phys., 15, 174-180. DOI: 10.1063/1.1746464.10.1063/1.1746464Search in Google Scholar

4. Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Leigh Review, 15, 33-81. http://preserve.lehigh.edu/cas-lehighreview-vol-15/5.Search in Google Scholar

5. Essene, E. J., & Peacor, D. R. (1983). Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi. Am. Miner., 68, 449-455.Search in Google Scholar

6. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751-767.10.1107/S0567739476001551Search in Google Scholar

7. Jastrzębska, I., Szczerba, J., & Stoch, P. (2017). Structural and microstructural study on the arc-plasma synthesized (APS) FeAl2O4-MgAl2O4 transitional refractory compound. High Temp. Mater. Process., 36(3), 299-304. DOI: 10.1515/htmp-2015-0252.10.1515/htmp-2015-0252Search in Google Scholar

8. Turnock, A. C., & Eugster, H. P. (1962). Fe-Al oxides: phase relations below 1000oC. J. Petrol., 3, 533-565.10.1093/petrology/3.3.533Search in Google Scholar

9. Turnock, A. C., & Lindsley, D. H. (1961). Fe-Al and Fe-Ti spinels and related oxides. In Year Book Carnegie Institution of Washington (vol. 60, pp. 152-157). Washington, D.C.: Carnegie Institution of Washington.Search in Google Scholar

10. Cremer, V. (1969). Die Mischkristallbildung im System Chromit-Magnetit-Hercynit zwischen 1000° und 500°C. Neues Jahrb. Mineral. Abh., 111(2), 184-205.Search in Google Scholar

11. Hålenius, U., Bosi, F., & Skokby, H. (2007). Galaxite, MnAl2O4, a spectroscopic standard for tetrahedrally coordinated Mn2+ in oxygen-based mineral structures. Am. Miner., 92, 1225-1231.10.2138/am.2007.2481Search in Google Scholar

12. Fischer, W. A., & Hoffmann, A. (1956). Das Zustandsschaubild Eisenoxydul-Aluminiumoxyd. Arch. Eisenhuettenwes. 27(5), 343-346.10.1002/srin.195601412Search in Google Scholar

13. Jacob, K. T. (1981). Revision of thermodynamic data on MnO-Al2O3 melts. Can. Metall. Q., 20(1), 89-92. DOI: http://dx.doi.org/10.1179/cmq.1981.20.1.89.10.1179/cmq.1981.20.1.89Search in Google Scholar

14. Jastrzębska, I., Szczerba, J., Błachowski, A., & Stoch, P. (2017). Structure and microstructure evolution of hercynite spinel (Fe2+Al2O4) after annealing treatment. Eur. J. Mineral., 29(1), 63-72. DOI: 10.1127/ejm/2017/0029-2579.10.1127/ejm/2017/0029-2579Search in Google Scholar

15. Liu, G., Li, N., Yan, W., Tao, G., & Li, Y. (2012). Composition and structure of a composite spinel made from magnesia and hercynite. J. Ceram. Proc. Res., 13(4), 480-485.Search in Google Scholar

16. Gelbmann, G., Krischanitz, R., & Jörg, S. (2013). Hybrid spinel technology provides performance advances for basic cement rotary kiln bricks. RHI Bull., 2, 10-12.Search in Google Scholar

17. Woodland, A. B., & Wood, B. J. (1990). The breakdown of hercynite at low fO2. Am. Miner., 75, 1342-1348.Search in Google Scholar

18. Bromiley, G. D., Gatta, G. D., & Stokes, T. (2015). Manganese incorporation in synthetic hercynite. Miner. Mag., 79(3), 635-647. DOI: 10.1180/minmag.2015.079.3.09.10.1180/minmag.2015.079.3.09Search in Google Scholar

19. Jastrzębska, I., & Szczerba, J. (2015). Non-conventional method of ceramic preparation - arc plasma synthesis (APS). In: X Krakow Conference of Young Scientists, KKMU Symposia and Conferences 10, 24-26 September 2015 (pp. 9-10). Krakow: AGH University of Science and Technology.Search in Google Scholar

20. Jastrzębska, I., Szczerba, J., Stoch, P., Błachowski, A., Ruebenbauer, K., Prorok, R., & Śnieżek, E. (2015). Crystal structure and Mössbauer study of FeAl2O4. Nukleonika, 60(1), 47-49. DOI: 10.1515/nuka-2015-0012.10.1515/nuka-2015-0012Search in Google Scholar

21. Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScore suite. Powder Diffr., 29, S13-S18. DOI: http://dx.doi.org/10.1017/S0885715614000840.10.1017/S0885715614000840Search in Google Scholar

22. Lutterotti, L., Matthies, S., & Wenk, H. R. (1999). MAUD (Material Analysis Using Diffraction): A user friendly Java program for Rietveld texture analysis and more. In: Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 9-13 August 1999, McGill University, Montreal, Canada (vol. 1, p. 1599). Ottawa: National Research Press.Search in Google Scholar

23. Prisecaru, I. (2009-2016). WMOSS4 Mössbauer Spectral Analysis Software. Available from http://www.wmoss.org.Search in Google Scholar

24. Hill, R. J. (1984). X-ray powder diffraction profi le refi nement of synthetic hercynite. Am. Miner., 69, 937-942.Search in Google Scholar

25. Lucchesi, S., Russo, U., & Della Giusta, A. (1997). Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels. Eur. J. Mineral., 9, 31-42. DOI: 10.1127/ejm/9/1/0031.10.1127/ejm/9/1/0031Search in Google Scholar

26. O’Neill, H., Hugh, St. C., & Navrotsky, A. (1983). Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Miner., 68, 181-194.Search in Google Scholar

27. Dézsi, I., Szűcs, I., & Sváb, E. (2000). Mössbauer spectroscopy of spinels, J. Radiat. Nucl. Chem., 246(1), 15-19. DOI: 10.1023/A:1006796022996.10.1023/A:1006796022996Search in Google Scholar

28. Larsson, L., O’Nei ll, H., & Annersten, H. (1994). Crystal chemistry of synthetic hercynite (FeAl2O4) from XRD structural refi nements and Mössbauer spectroscopy. Eur. J. Mineral., 6, 39-51. DOI: 10.1127/ejm/6/1/0039.10.1127/ejm/6/1/0039Search in Google Scholar

29. Muan, A., & Gee, C. L. (1956). Phase equilibrium studies in the system iron oxide Al2O3 in air and at 1 atm O2 pressure. J. Am. Ceram. Soc., 39(6), 207-214. DOI: 10.1111/j.1151-2916.1959.tb13581.x.10.1111/j.1151-2916.1959.tb13581.xSearch in Google Scholar

30. Menegazzo, G., Carbonin, S., & Della Giusta, A. (1997). Cation and vacancy distribution in an artificially oxidized natural spinel. Mineral. Mag., 61, 411-421. DOI: 10.1180/minmag.1997.061.406.07.10.1180/minmag.1997.061.406.07Search in Google Scholar

31. Jagodzinski, H., & Saalfeld, H. (1958). Cation distribution and structural relations in Mg-Al spinels. Z. Kristallogr., 110(3), 197-218. DOI: 10.1524/zkri.1958.110.16.197. (in German).10.1524/zkri.1958.110.16.197Search in Google Scholar

32. Sheldon, R. I., Hartmann, T., Sickafus, K. E., Ibarra, A., Scott, B. L., Argyriou, D. N., Larson, A. C., & Von Dreel, R. B. (1999). Cation disorder and vacancy distribution in nonstoichiometric magnesium aluminate spinel, MgO·xAl2O3. J. Am. Ceram. Soc., 82(12), 3293-3298. DOI: 10.1111/j.1151-2916.1999.tb02242.x.10.1111/j.1151-2916.1999.tb02242.xSearch in Google Scholar

33. Brice, J. C. (1986). Crystal growth processes. New York: Wiley. DOI: 10.1002/crat.2170220103.10.1002/crat.2170220103Search in Google Scholar

34. Roy, B. N. (1992). Crystal growth from melts. Applications to growth of groups 1 and 2 crystals. New York: Wiley. DOI: 10.1002/crat.2170270615.10.1002/crat.2170270615Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other