Cite

1. Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism: Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer, 8, 180-192.10.1038/nrc2344Search in Google Scholar

2. Zhang, J., Cao, J., Ma, S., Dong, R., Meng, W., Ying, M., Weng, Q., Chen, Z., Ma, J., Fang, Q., He, Q., & Yang, B. (2014). Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget, 5(20), 9664-9677.10.18632/oncotarget.1856Search in Google Scholar

3. Ackerman, D., & Simon, M. C. (2014). Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell. Biol., 24(8), 472-477.10.1016/j.tcb.2014.06.001Search in Google Scholar

4. Brown, J. M. (2007). Tumor hypoxia in cancer therapy. H. Sies, & B. Brune (Eds.) Methods in enzymolology. Vol. 435 (pp. 297-321). Academic Press.10.1016/S0076-6879(07)35015-5Search in Google Scholar

5. Nagelkerke, A., Bussink, J., Mujcic, H., Wouters, B. G., Lehmann, S., Sweep, F. C. G. J., & Span, P. N. (2013). Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res., 15, R2(13pp).10.1186/bcr3373Search in Google Scholar

6. Weeks, A. J., Paul, R. L., Marsden, P. K., Blower, P. J., & Lloyd, D. R. (2010). Radiobiological effects of hypoxia dependent uptake of 64Cu-ATSM: enhanced DNA damage and cytotoxicity in hypoxic cells. Eur. J. Nucl. Med. Mol. Imaging, 37, 330-338.10.1007/s00259-009-1305-8Search in Google Scholar

7. Mees, G., Dierckx, R., Vangestel, Ch., & Van de Wiele, Ch. (2009). Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imaging, 36, 1675-1680.10.1007/s00259-009-1195-9Search in Google Scholar

8. Peeters, S. G., Zegers, C. M., Lieuwes, N. G., van Elmpt, W., Eriksson, J., van Dongen, G. A., Dubois, L., & Lambin, P. (2015). A comparative study of the hypoxia PET tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int. J. Radiat. Oncol. Biol. Phys. 1, 91(2), 351-359.10.1016/j.ijrobp.2014.09.045Search in Google Scholar

9. Lin, A., & Hahn, S. M. (2012). Hypoxia imaging markers and applications for radiation treatment planning. Semin. Nucl. Med., 42, 343-352.10.1053/j.semnuclmed.2012.04.002Search in Google Scholar

10. Campanile, C., Arlt, M. J. E., Krämer, S. D., Honer, M., Gvozdenovic, A., Brennecke, P., Fischer, C. A., Sabile, A. A., Müller, A., Ametamey, S. A., Born, W., Schibli, R., & Fuchs, B. (2013). Characterization of different osteosarcoma phenotypes by PET imaging in preclinical animal models. J. Nucl. Med., 54(8), 1362-1368.10.2967/jnumed.112.115527Search in Google Scholar

11. Thézé, B., Bernards, N., Beynel, A., Bouet, S., Kuhnast, B., Buvat, I., Tavitian, B., & Boisgard, R. (2015). Monitoring therapeutic effi cacy of sunitinib using [18F]FDG and [18F]FMISO PET in an immunocompetent model of luminal B (HER2-positive)-type mammary carcinoma. BMC Cancer, 15, 534(10pp).10.1186/s12885-015-1540-2Search in Google Scholar

12. Arvold, N. D., Heidari, P., Kunawudhi, A., Sequist, L. V., & Mahmood, U. (2015). Tumor hypoxia response after targeted therapy in EGFR-mutant non-small cell lung cancer. Technol. Cancer Res. Treat., 15(2), 234-242.10.1177/1533034615574386Search in Google Scholar

13. Bruehlmeier, M., Kaser-Hotz, B., Achermann, R., Rohrer Bley, C., Wergin, M., Schubiger, P. A., & Ametamey, S. M. (2005). Measurement of tumor hypoxia in spontaneous canine sarcomas. Vet. Radiol. Ultrasoun., 46(4), 348-354.10.1111/j.1740-8261.2005.00065.xSearch in Google Scholar

14. Kilian, K., Chabecki, B., Kiec, J., Kunka, A., Panas, B., Wójcik, M., & Pekal, A. (2014). Synthesis, quality control and determination of metallic impurities in 18F-fl udeoxyglucose production process. Rep. Pract. Oncol. Radiother., 19, 22-31.10.1016/j.rpor.2014.03.001Search in Google Scholar

15. Anzellotti, A., Bailey, J., Ferguson, D., McFarland, A., Bochev, P., Andreev, G., Awasthi, V., & Brown- -Proctor, C. (2015). Automated production and quality testing of [18F]labeled radiotracers using the BG75 system. J. Radioanal. Nucl. Chem., 305(2), 387-401.10.1007/s10967-015-4045-1Search in Google Scholar

16. Blom, E., & Koziorowski, J. (2014). Automated synthesis of [18F]FMISO on IBA Synthera®. J. Radioanal. Nucl. Chem., 299(1), 265-270.10.1007/s10967-013-2753-ySearch in Google Scholar

17. Nandy, S. K., & Rajan, M. (2010). Fully automated radiosynthesis of [18F]Fluoromisonidazole with single neutral alumina column purifi cation: optimization of reaction parameters. J. Radioanal. Nucl. Chem., 286(1), 241-248.10.1007/s10967-010-0644-zSearch in Google Scholar

18. Bowen, S. R., van der Kogel, A. J., Nordsmark, M., Bentzen, M. S., & Jeraj, R. (2011). Characterization of PET hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl. Med. Biol., 38(6), 771-780.10.1016/j.nucmedbio.2011.02.002Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other