Cite

1. Fortov, V. E. (2009). Extreme states of matter. Moscow: PHIZMATHLIT.Search in Google Scholar

2. Fortov, V. E. (2011). Extreme states of matter: on Earth and in the Cosmos. Berlin: Springer.10.1007/978-3-642-16464-4Search in Google Scholar

3. Tahir, N. A., Kim, V., Schlitt, B., Barth, W., Groening, L., Lomonosov, I. V., Piriz, A. R., Stöhlker, Th., & Vormann, H. (2014). Three-dimensional thermal simulations of thin solid carbon foils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI. Phys. Rev. Accel. Beams, 17, 041003.10.1103/PhysRevSTAB.17.041003Search in Google Scholar

4. Ramazanov, T. S., Moldabekov, Zh. A., & Gabdullin, M. T. (2015). Effective potentials of interactions and thermodynamic properties of a nonideal two- -temperature dense plasma. Phys. Rev. E, 92, 023104.10.1103/PhysRevE.92.02310426382532Search in Google Scholar

5. Kodanova, S. K., Ramazanov, T. S., Issanova, M. K., Nigmetova, G. N., & Moldabekov, Zh. A. (2015). Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials. Contrib. Plasma Phys., 55, 271-276.10.1002/ctpp.201400094Search in Google Scholar

6. Ramazanov, T. S., Dzhumagulova, K. N., & Moldabekov, Zh. A. (2014). Generalized pair potential between charged particles in dense semiclassical plasma. Phys. Sci. Tech., 1, 47-53.10.26577/phst-2014-1-114Search in Google Scholar

7. Levashov, P. R., Bonitz, M., Filinov, V. S., & Fortov, V. E. (2006). Path integral Monte Carlo calculations of helium and hydrogen-helium thermodynamics and of the deuterium shock Hugoniot. J. Phys. A, 39, 4447-4452.10.1088/0305-4470/39/17/S20Search in Google Scholar

8. Sano, T., Ozaki, N., Sakaiya, T., Shigemori, K., Ikoma, M., Kimura, T., Miyanishi, K., Endo, T., Shiroshita, A., Takahashi, H., Jitsui, T., Hori, Y., Hironaka, Y., Iwamoto, A., Kadono, T., Nakai, M., Okuchi, T., Shimizu, K., Kondo, T., Kodama, R., & Mima, K. (2010). Hugoniot and temperature measurements of liquid hydrogen by laser-shock compression. In Proceedings on IFSA’09. San Francisco, USA, 244, 042018.10.1088/1742-6596/244/4/042018Search in Google Scholar

9. Nettelmann, N., Pustow, R., & Redmer, R. (2013). Saturn layered structure and homogeneous evolution models with different EOSs. Icarus, 225, 548-557.10.1016/j.icarus.2013.04.018Search in Google Scholar

10. Ordonez, C. A., & Molina, M. I. (1994). Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials. Phys. Plasmas, 1, 2515-2518.10.1063/1.870578Search in Google Scholar

11. Ramazanov, T. S., & Kodanova, S. K. (2001). Coulomb logarithm of a nonideal plasma. Phys. Plasmas, 8, 5049.10.1063/1.1407820Search in Google Scholar

12. Belyaev, G., Basko, M., Cherkasov, A., Golubev, A., Fertman, A., Roudskoy, I., Savin, S., Sharkov, B., Turtikov, V., Arzumanov, A., Borisenko, A., Gorlachev, I., Lysukhin, S., Hoffmann, D. H. H., & Tauschwitz, A. (1996). Measurement of the Coulomb energy loss by fast protons in a plasma target. Phys. Rev. E, 53, 2701-2707.10.1103/PhysRevE.53.2701Search in Google Scholar

13. Ramazanov, T. S., Kodanova, S. K., Moldabekov, Zh. A., & Issanova, M. K. (2013). Dynamical properties of non-ideal plasma on the basis of effective potentials. Phys. Plasmas, 20, 112702.10.1063/1.4829042Search in Google Scholar

14. Mahdavi, M., & Koohrokhi, T. (2012). Energy deposition of multi-MeV protons in compressed targets of fast-ignition inertial confinement fusion. Phys. Rev. E, 85, 016405.10.1103/PhysRevE.85.01640522400686Search in Google Scholar

15. Li, Ch. -K., & Petrasso, R. D. (1993). Charged-particle stopping powers in inertial confinement fusion plasmas. Phys. Rev. Lett., 70, 3059. http://dx.doi.org/10.1103/PhysRevLett.70.3059.10.1103/PhysRevLett.70.305910053765Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other