Cite

1. Borghesi, M. (2013). Laser-driven ion acceleration: State of the art and emerging mechanisms. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 740, 6-9. DOI: 10.1016/j. nima.2013.11.098.Search in Google Scholar

2. Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Modern Phys., 85(2), 751-793. DOI: 10.1103/ RevModPhys.85.751.10.1103/RevModPhys.85.751Search in Google Scholar

3. Lecz, Z., Boine-Frankenheim, O., & Kornilov, V. (2013). Target normal sheath acceleration for arbitrary proton layer thickness. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 727, 51-58. DOI: 10.1016/j.nima.2013.05.163.10.1016/j.nima.2013.05.163Search in Google Scholar

4. Torrisi, L., Cutroneo, M., Calcagno, L., Rosinski, M., & Ullschmied, J. (2014). TNSA ion acceleration at 1016 W/cm2 sub-nanosecond laser intensity. J. Phys. Conf. Ser., 508, 012002. DOI: 10.1088/1742-6596/508/1/012002.10.1088/1742-6596/508/1/012002Search in Google Scholar

5. Brenner, C. M., Green, J. S., Robinson, A. P. L., Carroll, D. C., Dromey, B., Foster, P. S., Kar, S., Li, J. T., Markey, K., Spindloe, C., Streeter, M. J. V., Tolley, M., Wahlström, C. G., Xu, M. H., Zepf, M., McKenna, P., & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams, 29, 345-451. DOI: 10.1017/ S0263034611000395.10.1017/S0263034611000395Search in Google Scholar

6. Torrisi, L., Giuffrida, L., Cutroneo, M., Cirrone, P. G. A., Picciotto, A., & Krasa, J. (2012). Proton emission from thin hydrogenated targets irradiated by laser pulses at 1016 W/cm2. Rev. Sci. Instrum., 83, 02B315. DOI: 10.1063/1.3673506.10.1063/1.367350622380294Search in Google Scholar

7. Saarilahti, J., & Rauhala, E. (1994). Interactive personal-computer data analysis of ion backscattering spectra. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 64(1/4), 734-738.Search in Google Scholar

8. Mayer, M. (1999). SIMNRA [computer software]. Max-Planck-Institut fur Plasmaphysik. Web site actual 2014: www.rzg.mpg.de/~mam/.Search in Google Scholar

9. Kubiak, K. J., Wilson, M. C. T., Mathia, T. G., & Carras, S. (2011). Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters. Scanning, 33, 370-377. DOI: 10.1002/sca.20289.10.1002/sca.2028921938731Search in Google Scholar

10. Cutroneo, M., Musumeci, P., Zimbone, M., Torrisi, L., La Via, F., Margarone, D., Velyhan, A., Ullschmied, J., & Calcagno, L. (2013). High performance SiC detectors for MeV ion beams generated by intense pulsed laser plasmas. J. Mater. Res., 28, 87-93. DOI: 10.1557/jmr.2012.211.10.1557/jmr.2012.211Search in Google Scholar

11. Cutroneo, M., Mackova, A., Malinsky, P., Matousek, J., Torrisi, L., & Ullschmied, J. (2015). High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 354, 56-59. DOI: 10.1016/j.nimb.2014.11.082.10.1016/j.nimb.2014.11.082Search in Google Scholar

12. Scolaro, C., Torrisi, L., Cutroneo, M., & Velardi, L. (2014). Wetting ability modifications in biocompatible polymers induced by pulsed lasers. J. Phys. Conf. Ser., 508, 012030. DOI: 10.1088/1742-6596/508/1/012030.10.1088/1742-6596/508/1/012030Search in Google Scholar

13. Torrisi, L. (2015). Gold nanoparticles enhancing protontherapy efficiency. Recent Patents on Nanotechnology, 9(1), 1000-000. DOI: 10.2174/187221012798109255.10.2174/18722101279810925521875405Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other