Cite

1. OECD-NEA. (2011). Potential benefi ts and impacts of advanced nuclear fuel cycles with actinide partitioning and transmutation. Issy-les-Moulineaux, France: O. Publishing OECD-NEA. (NEA no. 6894).Search in Google Scholar

2. González-Romero, E. M. (2011). Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des., 241, 3436-3444. DOI: 10.1016/j.nucengdes.2011.03.030.10.1016/j.nucengdes.2011.03.030Search in Google Scholar

3. Modolo, G., Geist, A., & Miguirditchian, M. (2015). Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe. In R. Taylor (Ed.), Reprocessing and recycling of spent nuclear fuel (pp. 245-287). Oxford: Woodhead Publishing.Search in Google Scholar

4. Baron, P., Hérès, X., Lecomte, M., & Masson, M. (2001). Separation of the minor actinides: the DIAMEX-SANEX concept. In Proceedings of the International Conference on Future Nuclear Systems, GLOBAL’01, 9-13 September 2001. Paris, France.Search in Google Scholar

5. Courson, O., Lebrun, M., Malmbeck, R., Pagliosa, G., Romer, K., Satmark, B., & Glatz, J. P. (2000). Partitioning of minor actinides from HLLW using the DIAMEX process. Part 1 - Demonstration of extraction performances and hydraulic behaviour of the solvent in a continuous process. Radiochim. Acta, 88, 857-863. DOI: 10.1524/ract.2000.88.12.857.10.1524/ract.2000.88.12.857Search in Google Scholar

6. Malmbeck, R., Courson, O., Pagliosa, G., Romer, K., Satmark, B., Glatz, J. P., & Baron, P. (2000). Partitioning of minor actinides from HLLW using the DIAMEX process. Part 2 - “Hot” continuous counter-current experiment. Radiochim. Acta, 88, 865-871. DOI: 10.1524/ract.2000.88.12.865.10.1524/ract.2000.88.12.865Search in Google Scholar

7. Geist, A., Hill, C., Modolo, G., Foreman, M. R. S. J., Weigl, M., Gompper, K., Hudson, M. J., & Madic, C. (2006). 6,6ʹ-Bis(5,5,8,8-tetramethyl-5,6,7,8- tetrahydro-benzo[1,2,4]triazin-3-yl)[2,2ʹ]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr. Ion Exch., 24, 463-483. DOI: 10.1080/07366290600761936.10.1080/07366290600761936Search in Google Scholar

8. Foreman, M. R. S., Hudson, M. J., Drew, M. G. B., Hill, C., & Madic, C. (2006). Complexes formed between the quadridentate, heterocyclic molecules 6,6ʹ-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2ʹ-bipyridine (BTBP) and lanthanides(III): implications for the partitioning of actinides(III) and lanthanides(III). Dalton Trans., 13, 1645-1653. DOI: 10.1039/B511321k.10.1039/B511321KSearch in Google Scholar

9. Magnusson, D., Christiansen, B., Foreman, M. R. S., Geist, A., Glatz, J. P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., & Sorel, C. (2009). Demonstration of a SANEX process in centrifugal contactors using the CyMe4-BTBP molecule on a genuine fuel solution. Solvent Extr. Ion Exch., 27, 97-106. DOI: 10.1080/07366290802672204.10.1080/07366290802672204Search in Google Scholar

10. Wilden, A., Schreinemachers, C., Sypula, M., & Modolo, G. (2011). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Solvent Extr. Ion Exch., 29, 190-212. DOI: 10.1080/07366299.2011.539122.10.1080/07366299.2011.539122Search in Google Scholar

11. Magnusson, D., Geist, A., Wilden, A., & Modolo, G. (2013). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4-BTBP and TODGA as 1-cycle SANEX solvent. Part II: Flowsheet design for a counter-current centrifugal contactor demonstration process. Solvent Extr. Ion Exch., 31, 1-11. DOI: 10.1080/07366299.2012.700596.10.1080/07366299.2012.700596Search in Google Scholar

12. Wilden, A., Modolo, G., Schreinemachers, C., Sadowski, F., Lange, S., Sypula, M., Magnusson, D., Geist, A., Lewis, F. W., Harwood, L. M., & Hudson, M. J. (2013). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Part III: Demonstration of a laboratory-scale counter-current centrifugal contactor process. Solvent Extr. Ion Exch., 31, 519-537. DOI: 10.1080/07366299.2013.775890.10.1080/07366299.2013.775890Search in Google Scholar

13. Mincher, B. J. (2010). An overview of selected radiation chemical reactions affecting fuel cycle solvent extraction. ACS Symp. Ser., 1046, 181-192. DOI: 10.1021/bk-2010-1046.ch015.10.1021/bk-2010-1046.ch015Search in Google Scholar

14. Hill, C., Berthon, L., & Madic, C. (2005). Study of the stability of BTP extractants under radiolysis. In Proceedings of the GLOBAL 2005, 9-13 October (p. 283). Tsukuba, Japan.Search in Google Scholar

15. Retegan, T., Ekberg, C., Englund, S., Fermvik, A., Foreman, M. R. S., & Skarnemark, G. (2007). The behaviour of organic solvents containing C5-BTBP and CyMe4-BTBP at low irradiation doses. Radiochim. Acta, 95, 637-642. DOI: 10.1524/ ract.2007.95.11.637.10.1524/ract.2007.95.11.637Search in Google Scholar

16. Fermvik, A., Berthon, L., Ekberg, C., Englund, S., Retegan, T., & Zorz, N. (2009). Radiolysis of solvents containing C5-BTBP: identifi cation of degradation products and their dependence on absorbed dose and dose rate. Dalton Trans., 32, 6421-6430. DOI: 10.1039/b907084b.10.1039/b907084b19655077Search in Google Scholar

17. Fermvik, A., Ekberg, C., Englund, S., Foreman, M. R. S. J., Modolo, G., Retegan, T., & Skarnemark, G. (2009). Infl uence of dose rate on the radiolytic stability of a BTBP solvent for actinide(III)/lanthanide(III) separation. Radiochim. Acta, 97, 319-324. DOI: 10.1524/ract.2009.1615.10.1524/ract.2009.1615Search in Google Scholar

18. Magnusson, D., Christiansen, B., Malmbeck, R., & Glatz, J. P. (2009). Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent. Radiochim. Acta, 97, 497-502. DOI: 10.1524/ ract.2009.1647.10.1524/ract.2009.1647Search in Google Scholar

19. Fermvik, A., Aneheim, E., Grüner, B., Hájková, Z., Kvicalová, M., & Ekberg, C. (2012). Radiolysis of C5-BTBP in cyclohexanone irradiated in the absence and presence of an aqueous phase. Radiochim. Acta, 100, 273-282. DOI: 10.1524/ract.2012.1908.10.1524/ract.2012.1908Search in Google Scholar

20. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2010). Review: The effects of radiation chemistry on solvent extraction 4: Separation of the trivalent actinides and considerations for radiation-resistant solvent systems. Solvent Extr. Ion Exch., 28, 415-436. DOI: 10.1080/07366299.2010.485548.10.1080/07366299.2010.485548Search in Google Scholar

21. Sulich, A., Grodkowski, J., Mirkowski, J., & Kocia, R. (2014). Reactions of ligands from BT(B)P family with solvated electrons and benzophenone ketyl radicals in 1-octanol solutions. Pulse radiolysis study. J. Radioanal. Nucl. Chem., 300, 415-421. DOI: 10.1007/ s10967-014-3021-5.10.1007/s10967-014-3021-5Search in Google Scholar

22. Mincher, B. J., & Mezyk, S. P. (2009). Radiation chemical effects on radiochemistry: A review of examples important to nuclear power. Radiochim. Acta, 97, 519-534. DOI: 10.1524/ract.2009.1646.10.1524/ract.2009.1646Search in Google Scholar

23. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch., 27, 1-25. DOI: 10.1080/07366290802544767.10.1080/07366290802544767Search in Google Scholar

24. Mincher, B. J. (2015). Radiation chemistry in the reprocessing and recycling of spent nuclear fuels. In R. Taylor (Ed.), Reprocessing and recycling of spent nuclear fuel (pp. 191-211). Oxford: Woodhead Publishing.Search in Google Scholar

25. Nilsson, M., Andersson, S., Ekberg, C., Foreman, M. R. S., Hudson, M. J., & Skarnemark, G. (2006). Inhibiting radiolysis of BTP molecules by addition of nitrobenzene. Radiochim. Acta, 94, 103-106. DOI: 10.1524/ract.2006.94.2.103.10.1524/ract.2006.94.2.103Search in Google Scholar

26. Mincher, B. J., Arbon, R. E., Knighton, W. B., & Meikrantz, D. H. (1994). Gamma-ray-induced degradation of PCBs in neutral isopropanol using spent reactor-fuel. Appl. Radiat. Isot., 45, 879-887. DOI: 10.1016/0969-8043(94)90219-4.10.1016/0969-8043(94)90219-4Search in Google Scholar

27. Freeman, G. R. (1970). Radiolysis of alcohols. Actions Chim. Biol. Radiat., 14, 73-134.Search in Google Scholar

28. Mincher, B. J., Mezyk, S. P., Elias, G., Groenewold, G. S., Riddle, C. L., & Olson, L. G. (2013). The radiation chemistry of CMPO: Part 1. Gamma radiolysis. Solvent Extr. Ion Exch., 31, 715-730. DOI: 10.1080/07366299.2013.815491.10.1080/07366299.2013.815491Search in Google Scholar

29. Symons, M. C. R., & Eastland, G. W. (1977). Radiation mechanisms. Part 18. The radiolysis of alcohols: an electron spin resonance study. J. Chem. Res., Suppl., 254-255.Search in Google Scholar

30. Sugo, Y., Sasaki, Y., & Tachimori, S. (2002). Studies on hydrolysis and radiolysis of N,N,Nʹ,Nʺ-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim. Acta, 90, 161-165. DOI: 10.1524/ract.2002.90.3_2002.161.10.1524/ract.2002.90.3_2002.161Search in Google Scholar

31. Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., & Kudo, H. (2007). Influence of diluent on radiolysis of amides in organic solution. Radiat. Phys. Chem., 76, 794-800. DOI: 10.1016/j.radphyschem.2006.05.008.10.1016/j.radphyschem.2006.05.008Search in Google Scholar

32. Steppert, M., Cisarova, I., Fanghanel, T., Geist, A., Lindqvist-Reis, P., Panak, P., Stepnicka, P., Trumm, S., & Walther, C. (2012). Complexation of europium(III) by bis(dialkyltriazinyl)bipyridines in 1-octanol. Inorg. Chem., 51, 591-600. DOI: 10.1021/ic202119x.10.1021/ic202119x22133151Search in Google Scholar

33. Mezyk, S. P., Cullen, T. D., Elias, G., & Mincher, B. J. (2010). Aqueous nitric acid radiation effects on solvent extraction process chemistry. ACS Symp. Ser., 1046, 193-203. DOI: 10.1021/bk-2010-1046.ch016.10.1021/bk-2010-1046.ch016Search in Google Scholar

34. Mincher, B. J. (2012). Degradation issues in aqueous reprocessing systems. Compr. Nucl. Mater., 5, 367-388. DOI: 10.1016/b978-0-08-056033-5.00104-x.10.1016/B978-0-08-056033-5.00104-XSearch in Google Scholar

35. Mincher, B. J., Mezyk, S. P., & Martin, L. R. (2008). A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J. Phys. Chem. A, 112, 6275-6280. DOI: 10.1021/jp802169v.10.1021/jp802169v18572898Search in Google Scholar

36. Harwood, L. M., Lewis, F. W., Hudson, M. J., John, J., & Distler, P. (2011). The separation of americium(III) from europium(III) by two new 6,6ʹ-bistriazinyl-2,2ʹ-bipyridines in different diluents. Solvent Extr. Ion Exch., 29, 551-576. DOI: 10.1080/10496475.2011.556989.10.1080/10496475.2011.556989Search in Google Scholar

37. Joshi, R., Pathak, P. N., Manchanda, V. K., Sarkar, S. K., & Mukherjee, T. (2010). Reactions of N,N-dihexyloctanamide with nitrate and dodecane radicals: a pulse radiolysis study. Res. Chem. Intermed., 36, 503-510. DOI: 10.1007/s11164-010-0161-2.10.1007/s11164-010-0161-2Search in Google Scholar

38. Neta, P., & Huie, R. E. (1986). Rate constants for reactions of nitrogen oxide (NO3) radicals in aqueous solutions. J. Phys. Chem., 90, 4644-4648. DOI: 10.1021/j100410a035.10.1021/j100410a035Search in Google Scholar

39. Katsumura, Y. (1998). NO2 • and NO3 • radicals in radiolysis of nitric acid solutions. In Z. B. Alfassi (Ed.), The chemistry of free radicals: N-centered radicals (pp. 393-412). Weinheim: Wiley.Search in Google Scholar

40. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., & Yoshida, Y. (1991). Pulse radiolysis study of aqueous nitric acid solutions: formation mechanism, yield, and reactivity of NO3 radical. J. Phys. Chem., 95, 4435-4439. DOI: 10.1021/ j100164a050.10.1021/j100164a050Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other