Open Access

Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step


Cite

1. OECD. (2004). Pyrochemical separations in nuclear applications. Status report of OECD.10.1787/annrep-2004-enSearch in Google Scholar

2. Long, J. T. (1978). Engineering for nuclear fuel reprocessing. 2nd ed. (pp. 242-272). American Nuclear Society.Search in Google Scholar

3. Laidler, J. J., Battles, J. E., Miller, W. E., Ackerman, J. P., & Carls, E. L. (1997). Development of pyroprocessing technology. Prog. Nucl. Energy, 31(1/2), 131.10.1016/0149-1970(96)00007-8Search in Google Scholar

4. Bettis, E. S., & Robertson, R. C. (1970). The design and performance features of a single-fl uid molten salt breeder reactor. Nucl. Appl. Technol., 8, 190-207.10.13182/NT70-A28625Search in Google Scholar

5. Whatley, M. E., McNeese, L. E., Carter, W. L., Ferris, L. M., & Nicholson, E. L. (1970). Engineering development of the MSBR fuel recycle. Nucl. Appl. Tech., 8, 170-178.10.13182/NT70-A28623Search in Google Scholar

6. Delpech, S., Merle-Lucotte, E., Heuer, D., Allibert, M., Ghetta, V., Le-Brun, C., Doligez, X., & Picard, G. S. (2009). Reactor physic and reprocessing scheme for innovative molten salt reactor system. J. Fluor. Chem., 130(1), 11-17.10.1016/j.jfluchem.2008.07.009Search in Google Scholar

7. Delpech, S. (2013). Molten salts for nuclear applications. In F. Lantelme, & H. Groult (Eds.), Molten salt chemistry: from lab to applications (pp. 497-520). USA: Elsevier.Search in Google Scholar

8. Briggs, R. B. (1966). Molten salt reactor program semiannual progress report for period ending February 28, 1966. USA: Oak Ridge National Laboratory (Report no. 3936).Search in Google Scholar

9. Delpech, S. (2013). Possible routes for pyrochemical separations: focus on the reductive extraction in fl uoride media. Pure Appl. Chem., 85, 71-87.10.1351/PAC-CON-12-04-06Search in Google Scholar

10. Ferris, L. M., Mailen, J. C., Lawrance, J. J., Smith, F. J., & Nogueira, E. D. (1970). Equilibrium distribution of actinide and lanthanide elements between molten fluoride salts and liquid bismuth solutions. J. Inorg. Nucl. Chem., 32, 2019-2035.10.1016/0022-1902(70)80611-XSearch in Google Scholar

11. Ferris, L. M., Smith, F. J., Mailen, J. C., & Bell, M. J. (1972). Distribution of lanthanide and actinide elements between molten lithium halide salts and liquid bismuth solutions. J. Inorg. Nucl. Chem., 34, 2921-2933.10.1016/0022-1902(72)80600-6Search in Google Scholar

12. Moriyama, H., Yajima, K., Nunogane, N., Ohmura, T., Moritani, K., & Oishi, J. (1984). Reductive extraction of lanthanide and actinide elements from molten LiF- -BeF2 salt into liquid bismuth. J. Nucl. Sci. Technol., 21(12), 949-958.10.1080/18811248.1984.9731137Search in Google Scholar

13. Moriyama, H., Yajima, K., Tominaga, Y., Moritani, K., & Oishi, J. (1983). Mechanism of distribution of actinide elements between molten fl uoride salts and liquid bismuth solutions. In Proceedings of the 1st International Symposium on Molten Salt Chemistry and Technolology, 20-22 April 1983 (pp. 419-422). Kyoto, Japan.Search in Google Scholar

14. Moriyama, H., Seshimo, T., Moritani, K., Ito, Y., & Mitsugashira, T. (1994). Reductive extraction behavior of actinide and lanthanide elements in molten salt and liquid metal binary phase systems. J. Alloys Compd., 213/214, 354-359.10.1016/0925-8388(94)90930-XSearch in Google Scholar

15. Lebedev, V. A. (1993). Selectivity of liquid metal electrodes in molten halides. Cheyabinsk: Metallurgiya.Search in Google Scholar

16. Smith, F. J. (1972). The solubilities of thorium and neodymium in liquid lithium-bismuth solutions. J. Less-Com. Met., 27, 195-200.10.1016/0022-5088(72)90030-6Search in Google Scholar

17. Laplace, A., Vigier, J. F., Plet, T., Renard, C., Abraham, F., Slim, C., Delpech, S., & Picard, G. (2011). Elaboration de solutions solides d’oxydes d’actinides et de lanthanides en milieu sels fondus: application à un nouveau procédé de refabrication du combustible par voie pyrochimique. Patent no. FR 11/58572.Search in Google Scholar

18. Delpech, S., Cabet, C., Slim, C., & Picard, G. S. (2010). Molten fl uorides for nuclear applications. Mat. Today, 13(12), 34-41.10.1016/S1369-7021(10)70222-4Search in Google Scholar

19. Rouquette-Sanchez, S., & Picard, G. S. (2004). Chalcogenide chemistry in molten salts. I. Selenium(IV) acido-basic and redox properties in the LiCl-KCl eutectic melt at 450, 500, 550 and 600°C. J. Electroanal. Chem., 572, 173-183.10.1016/j.jelechem.2004.06.010Search in Google Scholar

20. Jaskierowicz, S. (2012). Extraction des actinides et des lanthanides du combustible du réacteur rapide à sels fondus. Thesis of Univ. Paris Sud.Search in Google Scholar

21. Gibilaro, M., Bolmont, S., Massot, L., Latapie, L., & Chamelot, P. (2014). On the use of liquid metals as cathode in molten fl uorides. J. Electroanal. Chem., 726, 84-90.10.1016/j.jelechem.2014.05.014Search in Google Scholar

22. Moriyama, H., Miyazaki, M., Asaoka, Y., Moritani, K., & Oishi, J. (1991). Kinetics of reductive extraction of actinide and lanthanide elements from molten fl uoride into liquid bismuth. J. Nucl. Mater., 182, 113-117.10.1016/0022-3115(91)90420-CSearch in Google Scholar

23. Lemort, F., Boen, R., Allibert, M., Perrier, D., Fautrelle, Y., & Etay, J. (2005). Kinetics of the actinides-lanthanides separation: mass transfer between molten fluorides and liquid metal at high temperatures. J. Nucl. Mater., 336, 163-172.10.1016/j.jnucmat.2004.09.023Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other