Open Access

Principles of positron porosimetry


Cite

1. Hatton, B. D., Landskron, K., Hunks, W. J., Bennett, M. R., Shukaris, D., Perovic, D. D., & Ozin, G. A. (2006). Materials chemistry for low-k materials. Mater. Today, 9(3), 22–31. DOI: 10.1016/S1369-7021(06)71387-6.10.1016/S1369-7021(06)71387-6Search in Google Scholar

2. Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater., 77(1), 1–45. DOI: 10.1016/j.micromeso.2004.06.030.10.1016/j.micromeso.2004.06.030Search in Google Scholar

3. Slowing, I. I., Vivero-Escoto, J. L., Wu, C. -W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev., 60(11), 1278–1288. DOI: 10.1016/j.addr.2008.03.012.10.1016/j.addr.2008.03.01218514969Search in Google Scholar

4. Chang, F., Zhou, J., Chen, P., Chen, Y., Jia, H., Saad, S. M. I., Gao, Y., Cao, X., & Zheng, T. (2013). Microporous and mesoporous materials for gas storage and separation: a review. Asia-Pac. J. Chem. Eng., 8(4), 618–626. DOI: 10.1002/apj.1717.10.1002/apj.1717Search in Google Scholar

5. Maretto, M., Blanchi, F., Vignola, R., Canepari, S., Baric, M., Iazzoni, R., Tagliabue, M., & Papini, M. P. (2014). Microporous and mesoporous materials for the treatment of wastewater produced by petrochemical activities. J. Clean. Prod., 77, 22–34. DOI: 10.1016/j.jclepro.2013.12.070.10.1016/j.jclepro.2013.12.070Search in Google Scholar

6. Gidley, D. W., Frieze, W. E., Dull, T. L., Sun, J., Yee, A. F., Nguyen, C. V., & Yoon, D. Y. (2000). Determination of pore-size distribution in low-dielectric thin films. Appl. Phys. Lett., 76(10), 1282–1284. DOI: 10.1063/1.126009.10.1063/1.126009Search in Google Scholar

7. Goworek, J., Zaleski, R., Borówka, A., Kusak, R., & Kierys, A. (2009). Pore structure and morphology of mesoporous silicate and aluminosilicate molecular sieves by nitrogen adsorption, AFM and PALS. In S. Kaskel, P. Llewellyn, F. Rodriguez-Reinoso, & N. A. Seaton (Eds.), Characterisation of porous solids VIII: Proceedings of the 8th International Symposium on the Characterisation of Porous Solids (pp. 303–310). The Royal Society of Chemistry.Search in Google Scholar

8. Kullmann, J., Enke, D., Thraenert, S., Krause-Rehberg, R., & Inayat, A. (2010). Characterization of nanoporous monoliths using nitrogen adsorption and positronium annihilation lifetime spectroscopy. Colloids Surf. A, 357(1/3), 17–20. DOI: 10.1016/j.colsurfa.2009.09.030.10.1016/j.colsurfa.2009.09.030Search in Google Scholar

9. Zaleski, R., Stefaniak, W., Maciejewska, M., & Goworek, J. (2009). Porosity of polymer materials by various techniques. J. Porous Mat., 16(6), 691–698. DOI: 10.1007/s10934-008-9250-7.10.1007/s10934-008-9250-7Search in Google Scholar

10. Zaleski, R., Kierys, A., Grochowicz, M., Dziadosz, M., & Goworek, J. (2011). Synthesis and characterization of nanostructural polymer-silica composite: Positron annihilation lifetime spectroscopy study. J. Colloid Interf. Sci., 358(1), 268–276. DOI: 10.1016/j.jcis.2011.03.008.10.1016/j.jcis.2011.03.00821450302Search in Google Scholar

11. Kilburn, D., Sokol, P. E., Sakai, V. G., & Alam, M. A. (2008). Confinement induces both higher free volume and lower molecular mobility in glycerol. Appl. Phys. Lett., 92(3), 033109. DOI: 10.1063/1.2835903.10.1063/1.2835903Search in Google Scholar

12. Iskrová, M., Majerník, V., Illeková, E., Šauša, O., Berek, D., & Krištiak, J. (2009). Free volume seen by positronium in bulk and confined molecular liquid. Mater. Sci. Forum, 607, 235–237. DOI: 10.4028/www.scientific.net/MSF.607.235.Search in Google Scholar

13. Zaleski, R., & Goworek, J. (2009) n-Nonadecane embedded in mesopores. Mater. Sci. Forum, 607, 180–182. DOI: 10.4028/www.scientific.net/MSF.607.180.Search in Google Scholar

14. Kullmann, J., Enke, D., Thraenert, S., Krause-Rehberg, R., & Beiner, M. (2012). Characterization of pore filling of mesoporous host systems by means of positronium annihilation lifetime spectroscopy (PALS). Opt. Appl., 42(2), 281–286. DOI: 10.5277/oa120205.Search in Google Scholar

15. Zaleski, R., Stefaniak, W., Maciejew ska, M., & Goworek, J. (2010). Porosity evolution of VP-DVB/MCM-41 nanocomposite. J. Colloid Interf. Sci., 343(1), 134–140. DOI: 10.1016/j.jcis.2009.11.019.10.1016/j.jcis.2009.11.019Search in Google Scholar

16. Zaleski, R., Dolecki, W., Kierys, A., & Goworek, J. (2012). n-Heptane adsorption and desorption on porous silica observed by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater., 154, 142–147. DOI: 10.1016/j.micromeso.2011.08.032.10.1016/j.micromeso.2011.08.032Search in Google Scholar

17. Zaleski, R., & Wawryszczuk, J. (2008). Positron porosimetry studies of template removal from as-synthesized MCM-41 silica. Acta Phys. Pol. A, 113(5), 1543–1550.10.12693/APhysPolA.113.1543Search in Google Scholar

18. Zaleski, R., Goworek, J., & Borówka, A. (2007). Positronium annihilation study of as-synthesized MCM-41 silica under pressure. In P. L. Llewellyn, F. Rodriquez-Reinoso, J. Rouqerol, & N. Seaton (Eds.), Characterization of porous solids VII. (Studies in Surface Science and Catalysis, Vol. 160, pp. 471–478). Elsevier.10.1016/S0167-2991(07)80061-9Search in Google Scholar

19. Zaleski, R., Maciejewska, M., & Puzio, M. (2015). Mechanical stability of porous copolymers by positron annihilation lifetime spectroscopy. J. Phys. Chem. C, 119(21), 11636–11645. DOI: 10.1021/acs.jpcc.5b01722.10.1021/acs.jpcc.5b01722Search in Google Scholar

20. Zaleski, R., Kierys, A., Dziadosz, M., Goworek, J., & Halasz, I. (2012). Positron annihilation and N2-adsorption for nanopore determination in silica-polymer composites. RSC Adv., 2(9), 3729–3734. DOI: 10.1039/C2RA20147J.10.1039/c2ra20147jSearch in Google Scholar

21. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 335(1/2), 310–317. DOI: 10.1016/0168-9002(93)90286-Q.10.1016/0168-9002(93)90286-QSearch in Google Scholar

22. Zaleski, R. (2006). Measurement and analysis of the positron annihilation lifetime spectra for mesoporous silica. Acta Phys. Pol. A, 110(5), 729–738.10.12693/APhysPolA.110.729Search in Google Scholar

23. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7Search in Google Scholar

24. Tao, S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56(11), 5499–5510. DOI: 10.1063/1.1677067.10.1063/1.1677067Search in Google Scholar

25. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63(1/2), 51–58. DOI: 10.1016/0301-0104(81)80307-2.10.1016/0301-0104(81)80307-2Search in Google Scholar

26. Nakanishi, H., Wang, S. J., & Jean, Y. C. (1988). Microscopic surface tension studies by positron annihilation. In S. C. Sharma (Ed.), Proceedings of the International Symposium on Positron Annihilation Studies of Fluids (pp. 292–298). Singapore: World Scientific.Search in Google Scholar

27. Ciesielski, K., Dawidowicz, A. L., Goworek, T., Jasińska, B., & Wawryszczuk, J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett., 289(1/2), 41–45. DOI: 10.1016/S0009-2614(98)00416-3.10.1016/S0009-2614(98)00416-3Search in Google Scholar

28. Dull, T. L., Frieze, W. E., Gidley, D. W., Sun, J. N., & Yee, A. F. (2001). Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium. J. Phys. Chem. B, 105(20), 4657–4662. DOI: 10.1021/jp004182v.10.1021/jp004182vSearch in Google Scholar

29. Zaleski, R., EELViS. http://sourceforge.net/projects/eelvis/ Accessed: February 20, 2015.Search in Google Scholar

30. Thränert, S., Enke, D., Dlubek, G., & Krause-Rehberg, R. (2009). Positron lifetime spectroscopy on controlled pore glass porosimetry and pore size distribution. Mater. Sci. Forum, 607, 169–172. DOI: 10.4028/0-87849-348-4.169.10.4028/0-87849-348-4.169Search in Google Scholar

31. Zaleski, R., Wawryszczuk, J., & Goworek, T. (2007). Pick-off models in the studies of mesoporous silica MCM-41. Comparison of various methods of the PAL spectra analysis. Radiat. Phys. Chem., 76(2), 243–247. DOI: 10.1016/j.radphyschem.2006.03.044.10.1016/j.radphyschem.2006.03.044Search in Google Scholar

32. Goworek, T., Ciesielski, K., Jasinska, B., & Wawryszczuk, J. (1997). Positronium in large voids. Silicagel. Chem. Phys. Lett., 272(1/2), 91–95. DOI: 10.1016/S0009-2614(97)00504-6.10.1016/S0009-2614(97)00504-6Search in Google Scholar

33. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68(3/4), 531–534. DOI: 10.1016/S0969-806X(03)00224-X.10.1016/S0969-806X(03)00224-XSearch in Google Scholar

34. Śniegocka, M., Jasińska, B., Wawryszczuk, J., Zaleski, R., Deryło-Marczewska, A., & Skrzypek, I. (2005). Testing the extended Tao-Eldrup model. Silica gels produced with polymer template. Acta Phys. Pol. A, 107, 868–873.10.12693/APhysPolA.107.868Search in Google Scholar

35. Dlubek, G., Sen Gupta, A., Pionteck, J., Hassler, R., Krause-Rehberg, R., Kaspar, H., & Lochhaas, K. H. (2005). Glass transition and free volume in the mobile (MAF) and rigid (RAF) amorphous fractions of semicrystalline PTFE: a positron lifetime and PVT study. Polymer, 46(16), 607–6089. DOI: 10.1016/j.polymer.2005.04.090.10.1016/j.polymer.2005.04.090Search in Google Scholar

36. Zaleski, R., Goworek, J., & Maciejewska, M. (2009). Positronium lifetime in porous VP-DVB copolymer. Phys. Status Solidi C, 6(11), 2445–2447. DOI: 10.1002/pssc.200982075.10.1002/pssc.200982075Search in Google Scholar

37. Goworek, T., Jasinska, B., Wawryszczuk, J., Zaleski, R., & Suzuki, T. (2002). On possible deviations of experimental PALS data from positronium pick-off model estimates. Chem. Phys., 280(3), 295–307. DOI: 10.1016/S0301-0104(02)00491-3.10.1016/S0301-0104(02)00491-3Search in Google Scholar

38. Gorgol, M., Tydda, M., Kierys, A., & Zaleski, R. (2012). Composition of pore surface investigated by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater., 163, 276–281. DOI: 10.1016/j.micromeso.2012.07.029.10.1016/j.micromeso.2012.07.029Search in Google Scholar

39. Gorgol, M., Zaleski, R., & Kierys, A. (2013). Gas filling of SBA-15 silica micropores probed by positron annihilation lifetime spectroscopy (PALS). Nukleonika, 58(1), 227–231.Search in Google Scholar

40. Zaleski, R., & Sokół, M. (2011). Influence of atmospheric gases present in the pores of MCM-41 on lifetime of ortho-positronium. Mater. Sci. Forum, 666, 123–128. DOI: 10.4028/www.scientific.net/MSF.666.123.Search in Google Scholar

41. Zaleski, R., Błażewicz, A., & Kierys, A. (2013). Ortho-positronium migration in mesopores of MCM-41, MSF and SBA-3. Nukleonika, 58(1), 233–238.Search in Google Scholar

42. Thraenert, S., Hassan, E. M., Enke, D., Fuerst, D., Krause-Rehberg, R. (2007). Verifying the RTE model: ortho-positronium lifetime measurement on controlled pore glasses. Phys. Status Solidi C, 4(10), 3819–3822. DOI: 10.1002/pssc.200675738.10.1002/pssc.200675738Search in Google Scholar

43. Jasińska, B., Zaleski, R., Śniegocka, M., Reisfeld, R., & Zigansky, E. (2007). Testing ETE model, temperature dependences of PALS data. Phys. Status Solidi C, 4(10), 3985–3988. DOI: 10.1002/pssc.200675809.10.1002/pssc.200675809Search in Google Scholar

44. Śniegocka, M., Jasińska, B., Goworek, T., & Zaleski, R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett., 430(4/6), 351–354. DOI: 10.1016/j.cplett.2006.09.001.10.1016/j.cplett.2006.09.001Search in Google Scholar

45. Fischer, C. G., Weber, M. H., Wang, C. L., McNeil, S. P., & Lynn, K. G. (2005). Positronium in low temperature mesoporous films. Phys. Rev. B, 71(18), 180102. DOI: 10.1103/PhysRevB.71.180102.10.1103/PhysRevB.71.180102Search in Google Scholar

46. Zaleski, R. (2013). Ortho-positronium localization in pores of Vycor glass at low temperature. J. Phys. Conf. Ser., 443(1), 012062. DOI: 10.1088/1742-6596/443/1/012062.10.1088/1742-6596/443/1/012062Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other