Open Access

Positron annihilation studies of high-manganese steel deformed by rolling


Cite

1. Gutierrez-Urrutia, I., & Raabe, D. (2012). Grain size effect on strain hardening in twinning-induced plasticity steels. Scripta Mater., 66, 992–996. DOI: 10.1016/j.scriptamat.2012.01.037.10.1016/j.scriptamat.2012.01.037Search in Google Scholar

2. Yakubtsov, I. A., Ariapour, A., & Perovic, D. D. (1999). Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater., 47, 1271–1279. DOI: 10.1016/S1359-6454(98)00419-4.10.1016/S1359-6454(98)00419-4Search in Google Scholar

3. Adler, P. H., Olson, G. B., & Owen, W. S. (1986). Strain hardening of hadfield manganese steel. Metall. Mater. Trans. A-Phys. Metal. Mater. Sci., 17, 1725–1737. DOI: 10.1007/BF02817271.10.1007/BF02817271Search in Google Scholar

4. Allain, S., Chateau, J. P., Dahmoun, D., & Bouaziz, O. (2004). Modeling of mechanical twinning in a high manganese content austenitic steel. Mater. Sci. Eng. A, 387/389, 272–276. DOI: 10.1016/j.msea.2004.05.038.10.1016/j.msea.2004.05.038Search in Google Scholar

5. Miodownik, A. P. (1998). The role of anti-ferromagnetism on gamma-epsilon transformation in Fe-Mn alloys. Z. Metallkunde, 89, 840–847.Search in Google Scholar

6. Schumann, H. (1972). Distribution of phases in Fe-Mn-C system after deformation. Neue Hutte, 17, 605–609.Search in Google Scholar

7. Frommeyer, G., Brux, U., & Neumann, P. (2003). Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int., 43, 438–446. DOI: 10.2355/isijinternational.43.438.10.2355/isijinternational.43.438Search in Google Scholar

8. Dumay, A., Chateau, J. -P., Allain, S., Migot, S., & Bouaziz, O. (2008). Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mater. Sci. Eng. A, 483/484, 184–187. DOI: 10.1016/j.msea.2006.12.170.10.1016/j.msea.2006.12.170Search in Google Scholar

9. Wang, X. D., Huang, B. X., & Rong, Y. H. (2008). On deformation mechanism of twinning-induced plasticity steel. Phil. Mag. Lett., 88, 845–851. DOI: 10.1080/09500830802438123.10.1080/09500830802438123Search in Google Scholar

10. http://www.calphad.com/iron-manganese.html.Search in Google Scholar

11. Rabinkin, A. (1979). On magnetic contributions to γ→ε phase transformations in Fe-Mn alloys. Calphad, 3, 77–84. DOI: 10.1016/0364-5916(79)90008-7.10.1016/0364-5916(79)90008-7Search in Google Scholar

12. Dryzek, E., Sarnek, M., & Wróbel, M. (2014). Reverse transformation of deformation-induced martensite in austenitic stainless steel studied by positron annihilation. J. Mater. Sci., 49, 8449–8458. DOI: 10.1007/s10853-014-8555-y.10.1007/s10853-014-8555-ySearch in Google Scholar

13. De Cooman, B. C., Chin, K., & Kim, J. (2011). High Mn TWIP steels for automotive applications. In M. Chiaberge (Ed.), New trends and developments in automotive system engineering, InTech (pp. 101–128), from http://www.intechopen.com/books/new-trends-and-developments-in-automotive-system-engineering/high-mn-twip-steels-for-automotive-applications.Search in Google Scholar

14. Tavares, S. S. M., Lafuente, A., Miraglia, S., & Fruchart, D. (2002). X-ray diffraction and magnetic analysis of deformation induced martensites in a Fe-17Mn-1.9Al-0.1C steel. J. Mater. Sci., 37, 1645–1648. DOI: 10.1023/A:1014948831730.10.1023/A:1014948831730Search in Google Scholar

15. Kliber, J., Kursa, T., Drozd, K., Hajduchová, L., & Pešlová, F. (2012). Metallographic exploration of twip steel. In 24th International Conference on Metallurgy and Material METAL 23–25 May 2012 (pp. 446–452). Brno, Česká Republika.Search in Google Scholar

16. Dryzek, E., Sarnek, M., & Siemek, K. (2013). Annealing behavior of plastically deformed stainless steel 1.4307 studied by positron annihilation methods. Nukleonika, 58, 213−217.Search in Google Scholar

17. Dryzek, E., & Sarnek, M. (2014). Reverse transformation of deformation induced martensite in austenitic stainless steel studied by positron annihilation. Acta Phys. Pol. A, 125, 710–713. DOI: 10.12693/APhysPolA.125.710.10.12693/APhysPolA.125.710Search in Google Scholar

18. Padilha, A. F., Plaut, R. L., & Rios, P. R. (2003). Annealing of cold-worked austenitic stainless steels. ISIJ Int., 43, 135–143. DOI: 10.2355/isijinternational.43.135.10.2355/isijinternational.43.135Search in Google Scholar

19. Lü, Y., Hutchinson, B., Molodov, D. A., & Gottstein, G. (2010). Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy. Acta Mater., 58, 3079–3090. DOI: 10.1016/j.actamat.2010.01.045.10.1016/j.actamat.2010.01.045Search in Google Scholar

20. Lü, Y., Molodov, D. A., & Gottstein, G. (2011). Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe-Mn-C alloy. Acta Mater., 59, 229–3243. DOI: 10.1016/j.actamat.2011.01.063.10.1016/j.actamat.2011.01.063Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other