Open Access

CFD modeling of passive autocatalytic recombiners*


Cite

1. OECD/NEA. (2007). Source term assessment, containment atmosphere control systems and accident consequences. (Report CSNI 87/135). Paris.Search in Google Scholar

2. OECD/NEA. (1999). SOAR on containment thermalhydraulics and hydrogen distribution. (Report NEA/CSNI(R) 99/16). Paris.Search in Google Scholar

3. Preußer G., Freudenstein, K. F., & Reinders, R. (1996). Concept for the analysis of hydrogen problems in nuclear power plants after accidents. In Proceedings of the OECD/NEA/CSNI Workshop on the Implementation of Hydrogen Mitigation Techniques (pp. 113–127). Winnipeg, Manitoba.Search in Google Scholar

4. Arnould, F., Bachellerie, E., & et al. (2001). State of the art on hydrogen passive autocatalytic recombiner. In Proceedings of the FIssion SAfety (FISA’2001). EU research in reactor safety. Luxembourg.Search in Google Scholar

5. Bachellerie, E., Arnould, F., Auglaire, M., de Boeck, B., Braillard, O., Eckardt, B., Ferroni, F., & Moffett, R. (2003). Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des., 221, 151–165.10.1016/S0029-5493(02)00330-8Search in Google Scholar

6. Reinecke, E. -A., Boehm, J., Drinovac, P., & Struth, S. (2005). Modeling of catalytic recombiners: Comparison of REKO-DIREKT calculations with REKO-3 experiments. In Proceedings of International Conference on Nuclear Energy for New Europe, September 5–8, 2005. Bled.Search in Google Scholar

7. Reinecke, E. -A., Tragsdorf, I. M., & Gierling, K. (2004). Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors. Nucl. Eng. Des., 230, 49–59.10.1016/j.nucengdes.2003.10.009Search in Google Scholar

8. Levine, R. D. (2005). Molecular reaction dynamics. Cambridge University Press.10.1017/CBO9780511614125Search in Google Scholar

9. Launder, B. E. (1978). Heat and mass transport. In P. Bradshaw (Ed.) Topics in applied physics: turbulence (Vol. 12). Berlin: Springer.Search in Google Scholar

10. Kays, W. M., & Crawford, M. E. (1980). Convective heat and mass transfer. McGraw Hill.Search in Google Scholar

11. Tominaga, Y., & Stathopoulos, T. (2007). Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos. Environ., 41(37), 8091–8099.10.1016/j.atmosenv.2007.06.054Search in Google Scholar

12. CHEMKIN. (2000). Reaction design: TRANSPORT, a software package for the evaluation of gas-phase, multicomponent transport properties. CHEMKIN Collection Release 3.6. (Document No. TRA-036-1).Search in Google Scholar

13. Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (3rd ed.). Cambridge University Press.Search in Google Scholar

14. Dabbene, F., & Paillére, H. (2007). PARIS Benchmark Report. (CEA-Rapport DM2S – SMFE/LTMF/RT/07-003/A).Search in Google Scholar

15. Gera, B., Sharma, P. K., Singh, R. K., & Vaze, K. K. (2011). CFD analysis of passive autocatalytic recombiner and its interaction with containment atmosphere. BARC Newsletter, Founder’s Day Special Issue.Search in Google Scholar

16. AREVA Inc. (2011). AREVA passive autocatalytic recombiner. (Document No. G-008-V1PB-2011-ENG).Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other