Open Access

Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications


Cite

1. Pintsuk, G. (2012). Tungsten as a plasma-facing material. In R. J. M. Konings (Ed.), Comprehensive nuclear materials (pp. 551–581). Elsevier.10.1016/B978-0-08-056033-5.00118-XSearch in Google Scholar

2. Rieth, M., Dudarev, S. L., Gonzalez De Vicente, S. M., Aktaa, J., Ahlgren, T., Antusch, S., Armstrong, D. E. J., Balden, M., Baluc, N., Barthe, M. -F., Basuki, W. W., Battabyal, M., Becquart, C. S., Blagoeva, D., Boldyryeva, H., Brinkmann, J., Celino, M., Ciupinski, L., Correia, J. B., De Backer, A., Domain, C., Gaganidze, E., García-Rosales, C., Gibson, J., Gilbert, M. R., Giusepponi, S., Gludovatz, B., Greuner, H., Heinola, K., Höschen, T., Hoffmann, A., Holstein, N., Koch, F., Krauss, W., Li, H., Lindig, S., Linke, J., Linsmeier, Ch., López-Ruiz, P., Maier, H., Matějíček, J., Mishra, T. P., Muhammed, M., Muñoz, A., Muzyk, M., Nordlund, K., Nguyen-Manh, D., Opschoor, J., Ordás, N., Palacios, T., Pintsuk, G., Pippan, R., Reiser, J., Riesch, J., Roberts, S. G., Romaner, L., Rosinski, M., Sanchez, M., Schulmeyer, W., Traxler, H., Ureña, A., van der Laan, J. G., Veleva, L., Wahlberg, S., Walter, M., Weber, T., Weitkamp, T., Wurster, S., Yar, M. A., You, J. H., & Zivelonghi, A. (2013). Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater., 432(1/3), 482–500. DOI: 10.1016/j.jnucmat.2013.03.062.10.1016/j.jnucmat.2013.03.062Search in Google Scholar

3. Missiaen, J. M., Raharijaona, J. J., Antoni, A., Pascal, C., Richou, M., & Magaud, P. (2011). Design of a W/steel functionally graded material for plasma facing components of DEMO. J. Nucl. Mater., 416(3), 262–269. DOI: 10.1016/j.jnucmat.2011.05.054.10.1016/j.jnucmat.2011.05.054Search in Google Scholar

4. Weber, T., Stueber, M., Ulrich, S., Vaßen, R., Basuki, W. W., Lohmiller, J., Sittel, W., & Aktaa, J. (2013). Functionally graded vacuum plasma sprayed and magnetron sputtered tungsten/Eurofer97 interlayers for joints in helium-cooled divertor components. J. Nucl. Mater., 436(1/3), 29–39. DOI: 10.1016/j.jnucmat.2013.01.286.10.1016/j.jnucmat.2013.01.286Search in Google Scholar

5. Mušálek, R., Matějíček, J., Vilémová, M., & Kovářik, O. (2010). Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal loading. J. Therm. Spray Technol., 19(1/2), 422–428. DOI: 10.1007/s11666-009-9362-x.10.1007/s11666-009-9362-xSearch in Google Scholar

6. Vilémová, M., Matějíček, J., Mušálek, R., & Nohava, J. (2012). Application of structure-based models of mechanical and thermal properties on plasma sprayed coatings. J. Therm. Spray Technol., 21(3/4), 372–382. DOI: 10.1007/s11666-012-9739-0.10.1007/s11666-012-9739-0Search in Google Scholar

7. Matějíček, J., Vilémová, M., Kavka, T., Ctibor, P., Mušálek, R., Medřický, J., & Iždinský, K. (2015). Tungsten-steel composites and FGMs prepared by hybrid water-argon plasma spraying. To appear in Surface and Coatings Technology.Search in Google Scholar

8. Matějíček, J., Chráska, P., & Linke, J. (2007). Thermal spray coatings for fusion applications – review. J. Therm. Spray Technol., 16(1), 64–83. DOI: 10.1007/s11666-006-9007-2.10.1007/s11666-006-9007-2Search in Google Scholar

9. Hassanein, A., & Konkashbaev, I. (1996). Lifetime evaluation of plasma-facing materials during a tokamak disruption. J. Nucl. Mater., 233, 713–717. DOI: 10.1016/S0022-3115(96)00213-9.10.1016/S0022-3115(96)00213-9Search in Google Scholar

10. Matějíček, J., & Boldyryeva, H. (2009). Processing and temperature-dependent properties of plasma-sprayed tungsten-stainless steel composites. Phys. Scripta, T138, 014041. DOI: 10.1088/0031-8949/2009/T138/014041.10.1088/0031-8949/2009/T138/014041Search in Google Scholar

11. Vilémová, M., Nevrlá, B., & Matějíček, J. (2012). Mechanical and thermal properties of tungsten composite coatings. In Coatings and layers (pp. 135–140). Trenčín: LISS.Search in Google Scholar

12. Matějíček, J., Boldyryeva, H., & Ambrož, P. (2015). Tungsten-steel composites and FGMs prepared by laser cladding. To appear in Fusion Science and Technology.Search in Google Scholar

13. Matějíček, J., Boldyryeva, H., Brožek, V., Čižmárová, E., & Pala, Z. (2012). Tungsten-steel composites and FGMs produced by hot pressing. In: 21st International Conference on Metallurgy and Materials METAL 2012 (paper no. 177). Ostrava, Tanger.Search in Google Scholar

14. Matějíček, J., Dlabáček, Z., Nevrlá, B., Vilémová, M., Dlabáček, Z., Pala, Z., Čech, J., Klevarová, V., Kocmanová, L., Haušild, P., & Cinert, J. (2015). Processing and properties of tungsten-steel composites and FGMs prepared by spark plasma sintering. To appear in Fusion Engineering and Design.Search in Google Scholar

15. Matějíček, J., Kavka, T., Bertolissi, G., Ctibor, P., Vilémová, M., Mušálek, R., & Nevrlá, B. (2013). The role of spraying parameters and inert gas shrouding in hybrid water-argon plasma spraying of tungsten and copper for nuclear fusion applications. J. Therm. Spray Technol., 22(5), 744–755. DOI: 10.1007/s11666-013-9895-x.10.1007/s11666-013-9895-xSearch in Google Scholar

16. Matějíček, J., Koza, Y., & Weinzettl, V. (2005). Plasma sprayed tungsten-based coatings and their performance under fusion relevant conditions. Fusion Eng. Des., 75(9), 395–399. DOI: 10.1016/j.fusengdes.2005.06.006.10.1016/j.fusengdes.2005.06.006Search in Google Scholar

17. Matějíček, J., Iždinský, K., & Vondrouš, P. (2009). Methods of increasing thermal conductivity of plasma sprayed tungsten-based coatings. Adv. Mater. Res., 59, 82–86.10.4028/www.scientific.net/AMR.59.82Search in Google Scholar

18. Matějíček, J., & Holub, P. (2014). Laser remelting of plasma-sprayed tungsten coatings. J. Therm. Spray Technol., 23(4), 750–754. DOI: 10.1007/s11666-014-0067-4.10.1007/s11666-014-0067-4Search in Google Scholar

19. Laser cladding. Retrieved May 27, 2014 from http://en.wikipedia.org/wiki/Cladding_(metalworking)#Laser_cladding.Search in Google Scholar

20. Weber, T., Zhou, Z., Qu, D., & Aktaa, J. (2011). Resistance sintering under ultra high pressure of tungsten/Eurofer97 composites. J. Nucl. Mater., 414(1), 19–22. DOI: 10.1016/j.jnucmat.2011.04.024.10.1016/j.jnucmat.2011.04.024Search in Google Scholar

21. Weber, T., & Aktaa, J. (2011). Numerical assessment of functionally graded tungsten/steel joints for divertor applications. Fusion Eng. Des., 86(2/3), 220–226. DOI: 10.1016/j.fusengdes.2010.12.084.10.1016/j.fusengdes.2010.12.084Search in Google Scholar

22. Aktaa, J., Basuki, W. W., Weber, T., Norajitra, P., Krauss, W., & Konys, J. (2014). Manufacturing and joining technologies for helium cooled divertors. Fusion Eng. Des., 89(7/8), 913–920. DOI: 10.1016/j.fusengdes.2014.01.028.10.1016/j.fusengdes.2014.01.028Search in Google Scholar

23. Matějíček, J., Vilémová, M., Mušálek, R., Sachr, P., & Horník, J. (2013). The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coatings. Coatings, 3(2), 108–125. DOI: 10.3390/coatings3020108.10.3390/coatings3020108Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other