Open Access

Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass crystallization


Cite

1. Wacławska, I., & Szumera, M. (2010). Thermal behaviour of Fe-doped silicate-phosphate glasses. J. Therm. Anal. Calorim., 101(2), 423–427. DOI: 10.1007/s10973-010-0798-5.10.1007/s10973-010-0798-5Search in Google Scholar

2. Donald, W. (2007). Immobilisation of radioactive and non-radioactive wastes in glass-based systems: an overview. Glass Technol.: Eur. J. Glass Sci. Technol. Part A, 48(4), 155–163.Search in Google Scholar

3. Ojovan, M. I., & Lee, W. E. (2005). An introduction to nuclear waste immobilisation. Oxford, UK: Elsevier Science. DOI: 10.1016/B978-008044462-8.Search in Google Scholar

4. Stoch, P., Ciecinska, M., & Stoch, A. (2014). Thermal properties of phosphate glasses for salt waste immobilization. J. Therm. Anal. Calorim., 117(1), 177–204. DOI: 10.1007/s10973-014-3698-2.10.1007/s10973-014-3698-2Search in Google Scholar

5. Wright, A. C., Sinclair, R. N., Shaw, J. L., Haworth, R., Marasinghe, G., Day, D. E., Bingham, P. A., Forder, S. D., Cuello, G. J., & Fischer, H. E. (2012). The atomic and magnetic structure and dynamics of iron phosphate glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 53(6), 227–244.Search in Google Scholar

6. Wivel, C., & Mørup, S. (1981). Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E-Sci. Instrum., 14(5), 605–610. DOI: 10.1088/0022-3735/14/5/018.10.1088/0022-3735/14/5/018Search in Google Scholar

7. Alberto, H. V., Pinto da Cunha, J. L., Mysen, B. O., Gil, J. M., & Ayres de Campos, N. (1996). Analysis of Mössbauer spectra of silicate glass using a two-dimensional Gaussian distribution of hyperfine parameters. J. Non-Cryst. Solids, 194(1), 48–57. DOI: 10.1016/0022-3093(95)00463-7.10.1016/0022-3093(95)00463-7Search in Google Scholar

8. Stoch, P., Ciecinska, M., Zachariasz, P., Suwalski, J., Górski, L., & Wójcik, T. (2013). Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass. Nukleonika, 58(1), 63–66.Search in Google Scholar

9. Stoch, P., Szczerba, W., Bodnar, W., Ciecińska, M., Stoch, A., & Burkel, E. (2014). Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations. Phys. Chem. Chem. Phys., 16, 19917–19927. DOI: 10.1039/C4CP03113J.10.1039/C4CP03113JSearch in Google Scholar

10. Millet, J. M., Verley, C., Forissier, M., Bussiere, P., & Verdine, J. C. (1989). Mössbauer spectroscopic study of iron phosphate catalysts used in selective oxidation. Hyperfine Interact., 46(1), 619–628. DOI: 10.1007/BF02398251.10.1007/BF02398251Search in Google Scholar

11. Khan, F. B., Bharuth-Ram, K., & Friedrich, H. B. (2010). Phase transformations of the FePO4 catalyst in the oxidative dehydrogenation to form an alkyl methacrylate. Hyperfine Interact., 197(1/3), 317–323. DOI 10.1007/s10751-010-0254-8.10.1007/s10751-010-0254-8Search in Google Scholar

12. Ericsson, T., Nord, A. G., Ahmed, M. M. O., Gismelseed, A., & Khangi, F. (1990). Fe2P2O7 and Fe2P4O12 studied between 5–800 K. Hyperfine Interact., 57(1/4), 2179–2186. DOI: 10.1007/BF02405783.10.1007/BF02405783Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other