Open Access

Atomic short-range order in mechanically synthesized iron based Fe-Zn alloys studied by 57Fe Mössbauer spectroscopy


Cite

1. Suryanarayana, C. (2001). Mechanical alloying and milling. Prog. Mater. Sci., 46, 1–184. DOI: 10.1016/S0079-6425(99)00010-9.10.1016/S0079-6425(99)00010-9Search in Google Scholar

2. Cowley, J. M. (1950). An approximate theory of order in alloys. Phys. Rev., 77, 669–675. DOI: 10.1103/PhysRev.77.669.10.1103/PhysRev.77.669Search in Google Scholar

3. Staunton, J. B., Ling, M. F., & Johnson, D. D. (1997). A theoretical treatment of atomic short-range order and magnetism in iron-rich b.c.c. alloys. J. Phys.-Condens. Matter, 9, 1281–1300. DOI: 10.1088/0953-8984/9/6/014.10.1088/0953-8984/9/6/014Search in Google Scholar

4. Erhart, P., Caro, A., Serrano de Caro, M., & Sadigh, B. (2008). Short-range order and precipitation in Fe-rich Fe-Cr alloys. Phys. Rev. B, 77, 134206–134214. DOI: http://dx.doi.org/10.1103/PhysRevB.77.134206.Search in Google Scholar

5. Bonny, G., Erhart, P., Caro, A., Pasianot, R. C., Malerba, L., & Caro, M. (2009). The influence of short range order on the thermodynamics of Fe-Cr alloy. Model. Simul. Mater. Sci. Eng., 17, 025006–025021. DOI: 10.1088/0965-0393/17/2/025006.10.1088/0965-0393/17/2/025006Search in Google Scholar

6. Gorbatov, O. I., Kuznetsov, A. R., Gornostyrev, Yu. N., Ruban, A. V., Ershov, N. V., Lukshina, V. A., Chernenkov, Yu. P., & Fedorov, V. I. (2011). Role of magnetism in the formation of a short-range order in iron-silicon alloys. J. Exp. Theor. Phys., 112, 848–859. DOI: 10.1134/S1063776111040066.10.1134/S1063776111040066Search in Google Scholar

7. Mirebeau, I., & Parette, G. (2010). Neutron study of the short range order inversion in Fe1−xCrx. Phys. Rev. B, 82, 104203–104208. DOI: 10.1103/Phys-RevB.82.104203.Search in Google Scholar

8. Jartych, E. (2003). Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying. J. Magn. Magn. Mater., 265, 176–188. DOI: 10.1016/S0304-8853(03)00263-4.10.1016/S0304-8853(03)00263-4Search in Google Scholar

9. Dubiel, S. M., & Cieślak, J. (2013). Effect of thermal treatment on the short-range order in Fe-Cr alloys. Mater. Lett., 107, 86–89. DOI: 10.1016/j.matlet.2013.05.127.10.1016/j.matlet.2013.05.127Search in Google Scholar

10. Idczak, R., Konieczny, R., & Chojcan, J. (2013). Short-range order in iron alloys studied by 57Fe Mössbauer spectroscopy. Solid State Commun., 159, 22–25. DOI: 10.1016/j.ssc.2013.01.015.10.1016/j.ssc.2013.01.015Search in Google Scholar

11. Idczak, R., Konieczny, R., & Chojcan, J. (2012). Atomic short-range order in Fe1−xCrx alloys studied by 57Fe Mössbauer spectroscopy. J. Phys. Chem. Solids, 73, 1095–1098. DOI: 10.1016/j.jpcs.2012.05.010.10.1016/j.jpcs.2012.05.010Search in Google Scholar

12. Idczak, R., Konieczny, R., & Chojcan, J. (2012). An enthalpy of solution of chromium in iron studied with 57Fe Mössbauer spectroscopy. Physica B, 407, 2078–2081. DOI: 10.1016/j.physb.2012.02.009.10.1016/j.physb.2012.02.009Search in Google Scholar

13. Vincze, I., & Campbell, I. A. (1973). Mössbauer measurements in iron base alloys with transition metals. J. Phys. F, 3, 647–663. DOI: 10.1088/0305-4608/3/3/023.10.1088/0305-4608/3/3/023Search in Google Scholar

14. Błachowski, A., Ruebenbauer, K., Żukrowski, J., Przewoźnik, J., Marzec, J., & Rakowska, A. (2011). Spin- and charge density perturbations and short-range order in Fe-Cu and Fe-Zn BCC alloys: A Mössbauer study. J. Phys. Chem. Solids, 72, 1537–1542. DOI: 10.1016/j.jpcs.2011.08.032.10.1016/j.jpcs.2011.08.032Search in Google Scholar

15. Laggoun, A., Hauet, A., & Teillet, J. (1990). Mössbauer study of Zn effect on bcc iron in metastable Fe-Zn alloys. Hyperfine Interact., 54, 825–829. DOI: 10.1007/BF02396136.10.1007/BF02396136Search in Google Scholar

16. Błachowski, A., & Wdowik, U. D. (2012). Transition metal impurity effect on charge and spin density in iron: Ab initio calculations and comparison with Mössbauer data. J. Phys. Chem. Solids, 73, 317–323. DOI: 10.1016/j.jpcs.2011.10.017.10.1016/j.jpcs.2011.10.017Search in Google Scholar

17. Miedema, A. R. (1992). Energy effects and charge transfer in metal physics, modeling in real space. Physica B, 182, 1–17. DOI: 10.1016/0921-4526(92)90565-A.10.1016/0921-4526(92)90565-ASearch in Google Scholar

18. Xiong, W., Kong, Y., Du, Y., Liu, Z. K., Selleby, M., & Sun, W. (2009). Thermodynamic investigation of the galvanizing systems, I: Refinement of the thermodynamic description for the Fe-Zn system. Computer Coupling of Phase Diagrams and Thermochemistry, 33, 433–440. DOI: 10.1016/j.calphad.2009.01.002.10.1016/j.calphad.2009.01.002Search in Google Scholar

19. Su, X., Tang, N., & Toguri, J. M. (2001). Thermodynamic evaluation of the Fe-Zn system. J. Alloy. Compd., 325, 129–136. DOI: 10.1016/S0925-8388(01)01273-7.10.1016/S0925-8388(01)01273-7Search in Google Scholar

20. Nakano, J., Malakhov, D. V., & Purdy, G. R. (2005). A crystallographically consistent optimization of the Zn-Fe system. Computer Coupling of Phase Diagrams and Thermochemistry, 29, 276–288. DOI: 10.1016/j.calphad.2005.08.005.10.1016/j.calphad.2005.08.005Search in Google Scholar

21. Królas, K. (1981). Correlation between impurity binding energies and heat of formation of alloys. Phys. Lett. A, 85, 107–110. DOI: 10.1016/0375-9601(81)90235-8.10.1016/0375-9601(81)90235-8Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other